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Abstract—In this paper, we investigate the detection of laughter
from the user’s non-verbal full-body movement in social and
ecological contexts. 801 laughter and non-laughter segments of
full-body movement were examined from a corpus of motion
capture data of subjects participating in social activities that
stimulated laughter. A set of 13 full-body movement features was
identified and corresponding automated extraction algorithms
were developed. These features were extracted from the laughter
and non-laughter segments and the resulting data set was pro-
vided as input to supervised machine learning techniques. Both
discriminative (radial basis function-Support Vector Machines, k-
Nearest Neighbor, and Random Forest) and probabilistic (Naive
Bayes and Logistic Regression) classifiers were trained and eval-
uated. A comparison of automated classification with the ratings
of human observers for the same laughter and non-laughter
segments showed that the performance of our approach for
automated laughter detection is comparable with that of humans.
The highest F-score (0.74) was obtained by the Random Forest
classifier, whereas the F-score obtained by human observers
was 0.70. Based on the analysis techniques introduced in the
paper, a vision based system prototype for automated laughter
detection was designed and evaluated. Support Vector Machines
and Kohonen’s Self Organizing Maps were used for training and
the highest F-score was obtained with SVM (0.73).

Index Terms—laughter, detection, body expressivity, motion
capture, multimodal interaction, automated analysis of full-body
movement

I. INTRODUCTION

LAUGHTER is a powerful signal capable of triggering and
facilitating social interaction. Grammer [1] suggests that

it may convey social interest and reduce the sense of threat
in a group [2]. Further, laughter seems to improve learning
of new activities from other people [3], creativity [4] and
it facilitates sociability and cooperation [5]. Healthy positive
effects of laughter have been observed with people living with
stress or depression [6]. The EU-ICT FET Project ILHAIRE1

aims to study how machines could interact with users through
laughter: for example, to know when the user is laughing [7],
[8], to measure intensity of laughter [9], and to distinguish
between different types of laughter [10] by means of laughter
enabled virtual agents [11], [12].

In this paper, we propose models and techniques for the
automated detection of laughter from the user’s full-body

Manuscript received ...; revised ..; accepted ... The research leading to these
results has received funding from the EU 7th Framework Programme under
grant agreement n.270780 ILHAIRE. This paper was recommended by ....

All authors except G. Varni are with the Dipartimento di Informatica,
Bioingegneria, Robotica e Ingegneria dei Sistemi, Universita degli Studi di
Genova, Italy (see http://www.infomus.org). G. Varni is with Institute for
Intelligent Systems and Robotics, University Pierre and Marie Curie, Paris,
France

1http://www.ilhaire.eu

movement in social and ecological contexts. Whereas research
has focused on speech and facial expression as major channels
for detecting laughter (e.g., [13], [14]), capturing them reliably
in a social and ecological context is a complex task. Consider
an example involving a small group of friends standing and
conversing where robust capture of facial expressions is chal-
lenging and/or costly. This situation requires multiple cameras
capturing the face of each user with enough detail to perform
analysis. Due to the user’s movement, the cameras also need to
either track and follow the movements or continuously zoom
into the location containing the user’s face. In relation to
speech, the well known cocktail party effect [15] describes
how people are capable of focusing attention on a single con-
versation by filtering out other conversations and noise. Audio
source separation techniques are still an open research area
and their output is unlikely to be reliable enough for laughter
analysis. In contrast, low-cost motion tracking and analysis
systems can track and analyze the full-body movement of
each user. For example, by analyzing depth images, Microsoft
Kinect can reliably retrieve the silhouette of each user and her
body skeleton, including the 3D displacement of each body
joint, at a frame rate of 30 fps.

In this work, we analyze laughter by focusing on full-
body expressive movement captured with a motion capture
system. We do not distinguish among different laughter types
nor determine laughter intensity. Our study demonstrates that,
when data from other modalities are not available or are noisy,
the body is a robust cue for automated laughter detection.
We also present and evaluate a practical application of the
results of our study that uses a real-time system prototype
based on low-cost consumer hardware devices. The prototype
is developed with the freely available EyesWeb XMI2 research
platform [16], [17] and applies real-time algorithms for auto-
mated laughter detection starting from data captured by RGB-
D sensors (Kinect and Kinect2).

In Section II we describe the state of the art of laughter
analysis. Our study on laughter detection from motion capture
data is described in Section III. Section IV presents a real-
time system prototype for automated laughter detection. We
conclude the paper in Section V.

II. STATE OF THE ART

Laughter can be expressed with acoustic, facial, and full-
body cues. Most research on laughter expressive patterns
focuses on audio and facial expressions. Nevertheless, results
of our preliminary experiment [18] show that people are able

2http://eyesweb.infomus.org
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to recognize laughter from body movements only. In the
experiment, 10 animations displaying full-body motion capture
data corresponding to laughter and non-laughter episodes were
shown to participants. The results showed a recognition rate
over 79%. McKeown and colleagues [10] investigated the
human capability to distinguish between 4 different laughter
types in a perceptive evaluation. People were able to correctly
classify 4 laughter types with an accuracy rate of 28% (chance
level was 25%). In order to check whether it is possible
to distinguish between different laughter types only from
body movements, Griffin et al. [8] conducted a perceptual
study with the use of avatars animated with MoCap data. 32
participants categorized 126 stimuli using 5 labels: hilarious,
social, awkward, fake, or non-laughter. The agreement rates
between the participants varied from 32% (fake laughter) to
58% (hilarious laughter).

Body movements of laughter were described by Ruch and
Ekman [19]. According to them, most of the body movements
in laughter are related to respiration activity. These may
include “the backward tilt of the head”, “raise and straighten
of the trunk“ and “shaking of the shoulders and vibrations of
the trunk” [19]. Other body movements are also observed in
laughter, which are not related to respiration such as “rocking
violently sideways” or “hands throwing” [19]. A more formal
description of body movements in laughter was proposed
by Ruch and colleagues [20]. They developed an annotation
scheme that specifies, for each part of the body (head, trunk,
arms, legs), the shape of movement as well as its dynamic
and expressive qualities. For example, descriptors such as
“shaking”, “throwing”, or “rocking” characterize velocity of
movement or its tendency to be repetitive. Among the move-
ments observed in laughter are: head nodding up and down,
or shaking back and forth; shoulders contracting forward or
trembling; trunk rocking, throwing backward and forward or
straightening backward; arm throwing; and knees bending.

Existing laughter detection algorithms mainly focus on
audio (e.g., [21], [22]), physiological (e.g., [23]), or combined
facial and audio laughter detection (e.g., [13], [14]). Such
work supports classifying laughter segments off-line, but also
provides automatic online segmentation and detection. Impor-
tantly, most do not include body movements data.

Aiming at detecting laughter from audio, Truong and
Leeuwen [21] compared the performance of different acoustic
features (i.e., Perceptual Linear Prediction features, pitch and
energy, pitch and voicing, and modulation spectrum features)
and different classifiers. Gaussian Mixture Models trained with
Perceptual Linear Prediction features performed the best with
Equal Error Rate (EER) ranging from 7.1% to 20.0%. Knox
and Mirghafori [24] applied neural networks to automatically
segment and detect acoustic laughter from conversation. They
used Mel Frequency Cepstral Coefficients (MFCC) and the
fundamental frequency as features and the obtained EER was
7.9%. Salamin and colleagues [22] proposed an automatic
detection of acoustic laughter in spoken conversations cap-
tured with mobile phones. They segmented audio recordings
into four classes: laughter, filler, speech, and silence. Hidden
Markov Models (HMMs) combined with Statistical Language
Models were used, and reported F-scores for laughter varied

between 49% and 64%.
With respect to multimodal detection and fusion, Escalera

and colleagues [14] applied Stacked Sequential Learning for
audio-visual laughter detection. Audio features were extracted
from the spectrum, and complemented with accumulated
power, spectral entropy, and fundamental frequency. Facial
cues included the amount of mouth movement (between con-
secutive frames) and the laughter detection obtained from a
classifier trained on principal components extracted from a
labeled data set of mouth images. Results showed an accuracy
between 77% and 81%, depending on the type of data (multi-
modal or audio only). Petridis and colleagues [13] proposed an
algorithm based on the fusion of audio and facial modalities.
Using 20 points (facial features), 6 MFCCs, and Zero Crossing
Rate (audio features), they trained a neural network for a 2-
class (laughter vs. speech) discrimination problem and they
showed the advantage of a multimodal approach over video-
only detection (with accuracy of 83.3% for video-only and
of 90.1% for multimodal analysis). Scherer and colleagues
[25] compared the efficacy of various classifiers in audio-
visual offline and online laughter detection in natural multi-
party conversations. SVM was the most efficient in the offline
classification task, while HMM received the highest F-scores
in online detection (72%). Tatsumi and colleagues [23] argued
that people may hide their amusement (and laughter), and that
physiological cues may be indicators of such inhibited laugh-
ter. They detected inhibited laughter using facial electromyo-
gram (FEMG), skin conductance, and electrocardiogram data.
Cosentino et al. [26] detected laughter expressions using the
data from inertial measurement units (IMUs) and EMG sensors
placed directly on participant torso.

Body movements of laughter were rarely considered in
laughter detection algorithms. Mancini and colleagues [7]
proposed the Body Laughter Index (BLI). Their algorithm,
based on a small number of non-verbal expressive body
features extracted with computer vision methods, tracks the
position of the shoulders in real-time and computes an index,
which tends to 1 when laughter is more likely to occur. The
Body Laughter Index is a linear combination of the kinetic
energy of shoulders, of the Pearson’s correlation between
the vertical positions of the shoulders, and of the periodicity
of movement. Griffin and colleagues [8] proposed to detect
different types of laughter from motion capture data of body
movements. They used 126 segments from the UCL body
laughter data set of natural and posed laughter in both standing
and sitting postures. The segments were divided into 5 classes
according to a perceptual study with stick-figures animations
of motion capture data. They extracted 50 features: 1) low-
level features corresponding to distances and angles between
the joints, 2) high-level features e.g., kinetic energy of certain
joints, spectral power of shoulder movements, or smoothness
of shoulders trajectory. Features took into consideration both
upper and lower body parts. In the last step, they applied a va-
riety of classifiers. Results show efficacy in laughter detection
above chance level for three classes: hilarious laughter (F-
score: 60%), social laughter (F-score: 58%), and non-laughter
(F-score: 76%), using Random Forests.

The described laughter detection algorithms mainly focus on
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acoustic and facial cues. In ecological multi-party interaction,
the audio extraction of a single person‘s laughter and non-
invasive face tracking is still challenging. It is easier to track
the users‘ body movements during the interaction. Further,
de Gelder and colleagues [27] suggest that bodily cues are
particularly suitable for communication over larger distances,
whereas facial expressions are more suitable for a fine-grained
analysis of affective expressions. This suggests that full-body
movement can play an important role in social communication.

Our study on automated full-body laughter detection aims:
• to detect laughter from full-body movement only;
• to detect laughter occurring in natural spontaneous con-

texts;
• to distinguish laughter from other bodily expressive ac-

tivities that may occur in the same contexts.
Similar work was carried out by Griffin and colleagues

[8]. Both our and their work focus on laughter full-body
movements in natural and spontaneous contexts. While the
main focus of our study is on discriminating laughter from
non-laughter expressions, Griffin et al. [8] propose an auto-
matic recognition system for discriminating between the body
expressions that are perceived as different laughter types and
the ones that are perceived as non-laughter. Secondly, we use
a top-down approach for feature selection. Our set of high-
level features is based on the body annotation schema of
laughter presented in [20]. Our movement features capture the
dynamics of movement, e.g., its periodicity or suddenness.
Such features are representative of biological motion and,
consequently, have a meaningful interpretation. To define
ground truth, segments labeling was performed by taking into
account the available synchronized data, i.e., motion capture,
video, and audio. Next, we compare the results of automated
classification and humans’ classification of laughter stick-
figure animations against the ground truth. A larger set of
laughter segments was used in our study (801), compared to
Griffin et al. (i.e., 126). Additionally, we present a real-time
system prototype based on the results of our study.

III. AUTOMATED LAUGHTER DETECTION:
DATA SET AND EXPERIMENTS

This section describes a study in which we recorded peo-
ple while performing activities involving laughter and non-
laughter movements (Section III-A). Then, we segmented data
corresponding to such movements to generate a set of laughter
(Section III-B1) and non-laughter (Sections III-B2) segments.
The data of these two sets were used to define feature vectors
(Sections III-C2) which were, next, provided as input to
supervised machine learning algorithms (Section III-D). We
compared machine with human laughter classification ability
on the same data set (Section III-E).

A. The Multimodal and Multiperson Corpus of Laughter

We used the Multimodal and Multiperson Corpus of Laugh-
ter in Interaction (MMLI) corpus, recorded in collaboration
with ILHAIRE partners from Telecom ParisTech, University
of Augsburg, and University College of London [28]. This
corpus consists of full-body data collected with high precision

motion capture technology. The corpus is also characterized by
high variability of laughter expressions (variability of contexts,
many participants). It contains natural behaviors in multi-party
interactions, mostly spontaneous laughter displays. The cre-
ation of the experimental protocol was inspired by the previous
works carried out within the ILHAIRE Project. McKeown
et al. [29] proposed guidelines for laughter induction and
recording. They stressed the importance of creating a social
setting that is conducive to laughter generation by avoiding the
formality of the laboratory environment, recruiting participants
having strong affiliation, or using social games as the laughter
elicitation instrument.

Fig. 1. Synchronized data view.

To capture laughter in different contexts, we invited groups
of friends to perform six enjoyable tasks (T1 - T6). In
addition to classical laughter inducing tasks, such as watching
comedies, participants were asked to play social games, i.e.,
games regulated by one simple general rule in which players
are left free to improvise. According to [29], a lack of detailed
rules could encourage easy-going, spontaneous behavior.

1) Tasks: Participants were asked to perform the following
tasks: T1) watching comedies together, T2) watching comedies
separately, T3) “Yes/no” game, T4) “Barbichette” game, T5)
“Pictionary” game, T6) tongue twisters.

T1 and T2 are classic laughter-inducing tasks, i.e., watching
comedies selected by experimenters and participants. Com-
pared to other laughter corpora (e.g., [30]), participants were
not alone; they could talk freely (e.g., comment videos) and
hear each other. In T2, a curtain impeded one participant to
see the other ones during task execution, still allowing her to
hear them. Tasks T3 and T4 consisted of two social games that
were carried out in turns with participants switching between
different roles and competing against each other. In T3 one of
the participants had to quickly respond to questions from the
other participants without saying sentences containing either
“yes” or “no”. The role of the other two participants was to ask
questions and distract her, in an attempt to provoke the use of
the “forbidden” words. T4 is a French game for children whose
aim is to avoid laughing. Two participants faced each other,
made eye contact and held the other person’s chin. Participants
were allowed to talk, move and perform facial expressions,
always maintaining physical and eye contact. The person who
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Fig. 2. Some frames of a laughter episode. Trunk throwing (F8) and knee bending (F4) can be observed.

laughed first lost the game. In T5 one participant drew words
printed on a piece of paper extracted from an envelope. Her
task was to convey the word to the other participant by drawing
on a large board. T6 consisted of participants pronouncing
tongue twisters in different languages.

2) Technical Setup: During corpus collection, we captured
full-body movement of up to three human participants at the
same time. For this purpose, we recorded:

• the motion data of 2 participants using the Xsens MVN
Biomech system 4. The system consists of 17 inertial
sensors placed on velcro straps. Data were recorded at
120 frames per second; each frame consisting of the 3D
position of 22 body joints;

• audio samples captured with wearable microphones
(Mono, 16 kHz) placed close to the participants’ mouth;

• 4 video streams captured with Logitech Webcam Pro
9000 (640x480, 30fps) recorded the room from differ-
ent viewpoints in order to get the frontal view of the
participants;

• 2 high-frame rate video streams captured with Philips PC
Webcam SPZ5000 (640x480, 60fps) placed over tripods
recorded close-ups of the participants’ face.

3) Protocol: We recruited groups of friends. Participants
were selected from university (Master and PhD) students.
Data collection consisted of recording all interactions. We also
recorded participants during pauses between tasks. The whole
corpus consists of 6 sessions with 16 participants: 4 triads
and 2 dyads, age 20 - 35; 3 females; 8 French, 2 Polish, 2
Vietnamese, 1 German, 1 Austrian, 1 Chinese, and 1 Tunisian.
Participants were allowed to speak the language they used to
communicate with each other most of the time.

B. Segmentation

We analyzed and segmented data from 10 participants (8
men, 2 women) involved in 4 tasks (T1, T3, T4, and T5).
We skipped the data recorded during two tasks: T2 (watching
comedies separately), because some groups did not perform it,
and T6, because during tongue twisters people laughed while
speaking, so it was particularly difficult to precisely segment
and annotate this task.

For each participant and each task, the synchronized streams
of motion capture data (visualized through a graphical rep-
resentation of a skeleton), 6 RGB videos, and the corre-

sponding audio recordings were used for performing seg-
mentation (see Figure 1). We implemented software tools
for streams synchronization and segmentation by developing
modules for EyesWeb XMI. These tools are available for
research purposes on the EyesWeb XMI forum3. Segments
were annotated depending on whether they contained laughter
body movements or other kinds of body movements occurring
during spontaneous interaction.

1) Laughter Body Movements (LBM): This set consists
of 316 segments in which participants perform full-body
movements during laughter. Observers watched and segmented
the data corpus, performing a two-phases process.
a) Laughter segmentation. An observer watched and listened
to all recorded and synchronized data from the MMLI corpus,
isolating laughter segments, where laughter could be observed
or heard from at least one modality (i.e., face, audio, or
full-body movement). Isolating laughter segments by taking
into account the synchronized modalities was indispensable
to establish ground truth. The result of the process was a set
of 404 laughter segments that could contain full-body-only or
audio-only laughter cues.
b) Laughter annotation. Two raters watched the 404 laughter
segments resulting from the segmentation. They observed a
graphical interface showing the output of six cameras as well
as the graphical representation of a skeleton, see Figure 1.
The 2 raters did not hear any audio. They focused on the
body movement cues of laughter [19], [20] (see also Section
II):

• F1 - head side movement: head movements on the frontal
plane, the plane dividing the body into front and back
halves;

• F2 - head front/back movement: head movements on the
sagittal plane, the plane dividing the body into left and
right halves;

• F3 - weight shift: a change in body posture during which
the user switches the leg on which body weight is mainly
applied;

• F4 - knee bending: leg movement during which one or
two legs are bent at the knee;

• F5, F10 and F13 - abdomen, arm and shoulder shak-
ing: according to [12], [19], a laughter episode can
exhibit several repetitive body pulses that are caused by

3http://forum.eyesweb.infomus.org
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forced exhalation; these pulses can induce a repetitive
fast contraction/vibration of user’s abdomen, arm and/or
shoulder; we define such a movement type as a shaking
movement;

• F6 and F12 - trunk and arm straightening: trunk/arm
is extended, that is, a rotation is performed at the
pelvis/elbow level, increasing the angle between respec-
tively, trunk/upper arm and legs/lower arm;

• F7 and F11 - trunk and arm rocking: according to [12],
[19], during laughter, contraction/vibration induced by
forced exhalation can be accompanied by other body
movements such as sideways trunk and arm rocking,
which are, however, slow and repetitive; we define such
a movement type as a rocking movement;

• F8 and F9 - trunk and arm throwing: quick movement of
trunk/arm, in any direction, that is, a quick modification
of head/hand position in space.

The result of the annotation process is the LBM set,
consisting of 316 laughter segments exhibiting visible full-
body movements (movements in which one or more of the
cues F1-F13 were observed). In the excluded 88 segments
none of the cues F1-F13 was observed by any rater. The inter-
rater agreement between the 2 raters, measured with Cohen κ,
was 0.633, which is considered a “good” result [31]. In case
of disagreement between raters (e.g., only one rater observed
laughter body movements) such a segment was also included
into the LBM set. In total, 254 segments were evaluated by
both raters as displaying full-body movement cues of laughter;
62 segments on which the 2 raters did not agree were also
added to the set. Statistical information on the LBM set is
presented in Table I.

2) Other Body Movements (OBM): The same observer per-
formed another segmentation by isolating segments exhibiting
full-body movements that did not occur during laughter such
as folding/unfolding arm gestures, walking, or face rubbing.
All available modalities (audio, video, MoCap) were observed
and listened to during the segmentation process. The result of
the segmentation process is the OBM set, consisting of 485
segments of full-body movements occurring without laughter.
The statistical information on the OBM set is presented in
Table I. All 801 segments containing MoCap data can be
downloaded from http://www.infomus.org/ILHAIRE/mmli.

C. Feature vector

Starting from the LBM and OBM sets, we built a fea-
ture vector to be provided as input to classification models
described in Section III-E. The feature vector contains the
13 full-body movement features presented in Section III-B1.
The algorithms for extracting these features are based on
a common set of primitive functions. We first provide a
description of such primitives; then, each feature is computed
as a combination of primitives. Algorithms are implemented
in Matlab. Each feature is extracted on the entire length of
each LBM or OBM segment: for each of the 801 segments
we obtained a 13-values feature vector.

1) Primitive functions:
• Distance

D = Distance(J1, J2); (1)

Given 2 body joint labelled as J1 and J2, it returns a
1-dimensional vector D in which the i− th value is the
distance between the 2 joints at frame i.

• Speed

S = Speed(J1); (2)

Given one body joint labelled as J1, it returns a 1-
dimensional vector S in which the ith value is the joint’s
speed at frame i. Speed is computed with the Matlab
diff function and then it is filtered to remove spikes and
noise. We apply a low-pass Savitzky-Golay filter [32] to
the speed of the participant’s joints. We do not apply any
filter to positional data. In particular, we run the following
Matlab function on the participant’s joints speed data:
sgolayfilt(speed_data,3,41). The parameters
N=3, M=41 define a filter with a cutoff frequency of
about 1Hz.

• Normalize

VN = Normalize(V ); (3)

The provided 1-dimensional vector V is normalized in
[0, 1] by: (1) subtracting the minimum element from all
elements contained in the vector; (2) dividing all elements
of the vector by the maximum element of the vector:

• Threshold Check

A = Threshold Check(v, t, f); (4)

The value of v is compared with the threshold t. However,
a tolerance factor f ∈ [0, 1] is taken into account. If v is
lower than t, then A = 0; if v is higher than t but lower
than t+(t∗f) then A = (v−t)/(t∗f); A = 1 otherwise.

• Range Check

A = Range Check(v, r1, r2, f); (5)

This function compares the input value v with the range
[r1, r2], taking into account a tolerance factor f ∈ [0, 0.5].
If v is lower than r1 or higher than r2, then A = 0; if v is
higher than r1 but lower than r1+(r2−r1)∗f then A =
(v− r1)/((r2 − r1) ∗ f); if v is lower than r2 but higher
than r2−(r2−r1)∗f then A = −(r2−v)/((r2−r1)∗f);
A = 1 otherwise.

• Frequency Range Check

C = Frequency Check(V, f1, f2); (6)

The goal of this function is to compare the frequency of
variation of the 1-dimensional vector V provided as input
with the range of frequencies [f1, f2]. Estimation of the
frequency of variation of the input 1-dimensional vector
is performed as follows.
We apply to the input vector V a function to find peaks4.
We apply a least squares curve fitting to find all local

4For further details, see http://terpconnect.umd.edu/∼toh/spectrum/
PeakFindingandMeasurement.htm



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 6

TABLE I
DESCRIPTIVE STATISTICS.

Type No episodes/ Total Min Max Avg (s) Std (s)
no participants duration (s) duration (s) duration (s)

Laughter Body Movements 316/10 27 min 3 s 1.4 s 46.4 s 5.13 s 4.28 s
Other Body Movements 485/10 46 min 18 s 1.4 s 23.3 s 5.72 s 2.59 s

Fig. 3. Detected peaks of the participant’s right shoulder position |rs| are
the local maxima exhibiting slope values higher than a given threshold. In the
graph, peaks are highlighted by a gray circle: that is, the algorithm does not
detect all local maxima as peaks. The approximate peaks frequency is then
computed as the ratio between the segment length and the number of peaks.
In the example, the segment length is approximately 320 frames, that is, 2.6
seconds at 120fps. The approximate peaks frequency is 6.0/2.6 = 2.30Hz.

maxima in the input data in which the fitted curve
exhibits a slope higher than a given threshold. We fixed
this threshold to find peaks corresponding to frequencies
higher than fL.
If 0 or 1 peaks are found then we set C = 0 and the
algorithm terminates. If 2 or more peaks are detected
then we compute their approximate frequency F (in Hz)
of repetition as the ratio between the number of peaks
and the length of the segment. For example, if 3 peaks
are detected in a segment lasting 4 seconds, we estimate
a peaks frequency of F = 3/4 = 0.75Hz.
We finally compare the computed frequency F with
[f1, f2] by applying the Range Check primitive. If F
is outside the range then we set C = 0. Otherwise, the
value of C will tend to reach the value of 1 as long as
the value of F tends to reach the center of the interval
[f1, f2].
Figure 3 illustrates the computation of participant’s right
shoulder frequency of movement.

2) Movement Features Extraction: The Matlab implemen-
tation of the 13 full-body movement features is illustrated
in Figure 4. On the left side of the Figure, skeleton joints
labels are reported, except for joint (0, 0, 0), which refers
to the world’s center. All features algorithms are based on
the primitive functions, which are reported in the middle
of the Figure. The functions var and cumsum correspond
to, respectively, the Matlab variance and integral (cumulative
sum) functions. On the right, the computed movement features
names are reported.

In Figure 4:
• algorithms marked with a * are computed 2 times, both

on the joints reported on the left and on the same

Fig. 4. Movement features extraction algorithms: on the left, body joints are
selected; then, their positional data are provided as input to the algorithms in
processing portion; the computed features names are reported on the right.

joints belonging to the opposite side of body; then, the
computed quantities are summed before continuing with
the algorithm. For example, for feature F4, the cumulative
sum (the block marked with a *) is computed 2 times, on
joints right upper leg, right lower leg and right foot, and
on joints left upper leg, left lower leg and left foot. Then,
the resulting cumulative sums are summed to compute
knee bending.

• Threshold Check is performed 2 times: on the neck-
pelvis distance speed to compute trunk throwing and on
the sum between right hand-pelvis distance speed and
left hand-pelvis distance speed to compute arm throw-
ing. The 2 thresholds, 0.15 and 0.60 respectively, were
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determined empirically by measuring the 2 speed values
on movements that, according to annotation, exhibited the
trunk throwing and arm throwing movement features.

• Frequency Range Check is performed 4 times to check
whether some distances vary with a frequency in a given
range. In particular, we focused on 2 ranges: [0.5, 2.0]Hz
and [1.5, 5.5]Hz. The first one corresponds to frequencies
typical of rocking movements, and the second one cor-
responds to shaking movements. According to [19] and
[12], the frequency of trunk and limbs rocking during
laughter varies in the first range while the frequency of
abdomen and shoulders shaking varies in the second one.

We checked the pair-wise correlations between features F1-
F13 on the whole data set. The mean absolute correlation
is 0.075 and the standard deviation is 0.14 (only 27 out of
78 pairs had significant correlations). The highest correlations
were observed for the pairs: F10, F11 (r = −0.731, p < .001),
F1, F2 (r = 0.6024, p < .001) and F5, F13 (r = 0.4257, p <
.001). The pair F10, F11 corresponds to arm shaking and
rocking. The high negative correlation is not surprising, as
these two features are measuring two different types of repet-
itive movements (slow and quick) defined with two different
ranges of frequencies. The pairs F1, F2 corresponds to the
head movements on the different axes. As the head movements
cannot be performed exclusively on one plane in real-life
settings, a higher correlation can be expected also in this case.
Finally, in the case of the pair F5, F13, both features measure
repetitive movements having the same ranges of frequencies.
The higher correlation could be also expected in this case, as
these movements are related to the respiration pattern [19].

D. Automated Classification

The performances of 5 supervised machine learning algo-
rithms were tested to classify LBM vs. OBM segments:
radial basis function-Support Vector Machine (rbf-SVM), k-
Nearest Neighbor (k-NN), Random Forest (RF), Naı̈ve Bayes
(NB), and Logistic Regression (LR). We chose these algo-
rithms in order to evaluate how both discriminative (SVM,
k-NN, RF) and probabilistic algorithms (NB, LR) work on
our data set. The averaged performance of each classifier
was assessed via a multiple-run k-fold (nested) stratified cross
validation. In our study, we adopted 5 run and 10 folds.
The inner loop of the cross-validation aimed at performing
model selection. The parameters of rbf-SVM and k-NN were
estimated via a grid search approach with a 5-fold stratified
cross-validation. A 5-fold cross-validation was used to tune
the number of trees composing the random forest, while the
number of attributes for each tree in the forest was chosen
equal to the square root of the number of features. For
the Naı̈ve Bayes classifier, the likelihood of the features is
assumed to be Gaussian.

Table II reports average confusion matrices for k-NN and
SVM algorithms. Table III shows the performance of each
classifier in terms of Precision, Recall and F-score. Tables IV
and V show the same metrics for LBM and OBM classes,
respectively. All the classifiers were able to discriminate LBM
from OBM well above chance level (50%). To determine

TABLE II
AVERAGE VALUES OF CONFUSION MATRICES FOR K-NN AND SVM

ALGORITHMS.

k-NN SVM
Laughter Non-Laughter Laughter Non-Laughter

Laughter 189.6 126.4 213.2 102.8
Non-Laughter 72.6 412.4 126.2 358.8

whether one of the learning algorithms outperforms the other
ones on our data set, we carried out a 5-runs 10-folds cross
validation in the use all data version as described in [33]. The
use all data approach with calibrated degrees of freedom is a
successful method to compensate for the difference between
the desired Type I error and the true Type I error. It was chosen
because it is the conceptually simplest test for comparing
supervised classification algorithms. Further, it outperforms
on power and replicability other common tests such as, for
example, 5X2 cross-validation, re-sampling and k-folds cross
validation [33].

TABLE III
WEIGHTED AVERAGE PRECISION, RECALL, AND F-SCORE FOR ALL

SEGMENTS (CLASSES LBM+OBM).

Avg. Precision Recall F-score
SVM 0.72 0.71 0.71
k-NN 0.75 0.75 0.74

RF 0.73 0.73 0.72
LR 0.72 0.71 0.71
NB 0.69 0.65 0.59

TABLE IV
PRECISION, RECALL, F-SCORE FOR LAUGHTER BODY MOVEMENT

SEGMENTS (CLASS LBM ONLY).

Precision Recall F-score
SVM 0.62 0.67 0.64
k-NN 0.72 0.60 0.65

RF 0.66 0.67 0.66
LR 0.64 0.64 0.64
NB 0.72 0.21 0.32

TABLE V
PRECISION, RECALL AND F-SCORE FOR OTHER BODY MOVEMENT

SEGMENTS (CLASS OBM ONLY).

Precision Recall F-score
SVM 0.78 0.73 0.75
k-NN 0.76 0.85 0.80

RF 0.78 0.76 0.77
LR 0.77 0.76 0.76
NB 0.65 0.94 0.77

F-score values were computed for each algorithm, and
the differences among these values were then computed for
each pair of algorithms. Such resulting differences are used
as independent samples for Z-tests. Bonferroni adjustment
of α was used where necessary to compensate for multiple
comparisons when Z statistics are calculated. We chose to
compare between the algorithms belonging to the same class,
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that is discriminative or probabilistic, and then, in case of
significant differences, to compare the two winning algorithms.

The Z-tests indicated no difference among all the discrim-
inative nor among all the probabilistic classifiers. The Z-
test between one discriminative (SVM) and one probabilistic
(NB) classifier showed a significant difference (Z = 5.514,
p < 0.00001). We conclude that the discriminative classifier
outperforms the probabilistic classifier on our data set.

E. Machine vs. Human Classification

To evaluate our approach, we measured the human ability
to recognize laughter from body movements. We asked to
label the segments of our data set in an evaluation study that
was carried out through an online questionnaire consisting of
videos and questions. Participants had to watch stick-figure
animations of a skeleton (i.e., with no audio and no facial
expressions, see Figure 2) and answer to the question: “Do you
think that the person represented in the video is laughing?”.

A web page displayed one full-body skeleton animation of
motion capture data corresponding to one segment among the
segments of both LBM and OBM (i.e., the whole machine
learning data set). Participants could watch each animation as
many times as they wanted and they had to decide whether the
displayed skeleton was laughing or not. Each participant could
evaluate any number of animations. Evaluation was performed
by keeping the participants unaware of the cause, of the
mechanisms, and of the context of laughter [34]. Animations
were displayed in a random order: each new animation was
chosen among the animations that received the smaller number
of evaluations. In this way, we obtained a balanced number of
evaluations for all segments.

In total 801 stick-figures animations were used in this study.
We collected 2403 answers from anonymous participants.
Each animation was labeled 3 times. Next, for each segment,
the simple majority of the votes was considered to assign
it to a class. Figure 5 shows the final results. Most of the
OBM segments were classified correctly (i.e., 425 out of 485).
About half of the LBM segments were incorrectly labeled as
non-laughter segments (i.e., 171 out of 316). Our participants
tended to often use the “non-laughter” label. The accuracy of
the human classification is 0.71, the global F-score is 0.695.
The results are presented in Table VI.

Fig. 5. The average results of human classification of 801 segments.

There is a difference between the selection done by raters
skilled in non-verbal body movements (see Section III-B1)
and the results of this study. However, that these two tasks are

TABLE VI
AVERAGED AND SINGLE-CLASS PRECISION AND F-SCORE OF MACHINE

AND HUMAN CLASSIFICATION.

Measure Precision (F-score)
Class Weighted Avg. Laughter Non-Laughter
SVM 0.72(0.71) 0.62(0.64) 0.78(0.75)
k-NN 0.75(0.74) 0.72(0.65) 0.76(0.80)

RF 0.73(0.72) 0.66(0.66) 0.78(0.77)
LR 0.72(0.71) 0.64(0.64) 0.77(0.76)
NB 0.69(0.59) 0.72(0.32) 0.65(0.77)

Human 0.71(0.70) 0.70(0.55) 0.71(0.78)

different: the elements of the LBM set were chosen using
precise criteria that were explicitly explained to the raters
(i.e., cues F1-F13), whereas in the perceptive study we asked
participants to express their overall feeling about animations.
In order to check whether this difference depends on a specific
subject, we carried out additional analyzes on the LBM
segments only. The percentage of correctly annotated laughter
segments ranges from 5% to 61%. The participants did not
recognize most of the laughs of subjects S9 (5% correctly
recognized animations), S6 (30%) and S10 (33%).

F. Discussion

The results of our study show that it is possible to build
a machine that can recognize laughter from full-body move-
ments. Both humans and machines exhibited similar per-
formance in such a task: they are both well above chance
level (50%). Interestingly, when comparing the Recalls and
F-scores of automatic classification and human observers (see
Table VI), the number of true positives and true negatives in
automatic classification is more balanced than for the human
observers (e.g., recall for SVM is 0.67 (laughter) vs. 0.73
(non-laughter), while for human classification is 0.46 vs.
0.88). Whereas humans were not particularly good in detecting
laughter segments, some classification algorithms (e.g., SVM)
were able to classify on average more laughter segments
correctly (but less non-laughter segments).

An limitation of our study is that the number of segments
per participant in our data set was not balanced. During the
recordings, important differences in number and intensity of
laughs between participants were observed (see also [28]). The
personal laughing styles of the participants, who more fre-
quently appear in the data set may have influenced the models
the machine learning algorithms generated. An advantage of
our approach is that the features we compute strictly follow the
latest theoretical works on the expressive pattern of laughter.

It would be interesting to compare the classification ac-
curacy when using different techniques and modalities, e.g.,
audio, video. However, direct comparison of our results with
other laughter detection algorithms is not possible, because:
1) such algorithms were trained and tested on different data
sets (and full-body movement data are not available), and 2)
it is difficult to record at the same time different modalities
(e.g., spontaneous facial expressions and body movements)
with the existing technology (see Section I). We made our
training set publicly available to facilitate future research in
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(a) (b)

Fig. 6. Our system prototype for automated laughter detection from full-body
movement: a) the prototype system architecture, b) a user is sitting in front of
the system: the user’s body silhouette is extracted and segmented in 2 parts:
head (upper box marked by H) and trunk (lower box marked by T).

this area. Laughter detection from acoustic cues is around
70 − 80%, whereas multimodal (facial and audio) detection
can even reach the accuracy of 90%. Even if the results of our
classifiers are lower than results of other classifiers trained on
acoustic or multimodal data, our classifiers can be used when
data from other modalities is not available or can be noisy.

Comparing with the results of Griffin et al. [8] we obtain
comparable F-scores on our data set. They obtained the best
results using RF (F-score: 0.60 for laughter class, F-score: 0.76
for non-laughter class), and SVR (F-score: 0.63 for laughter,
0.61 for non-laughter), while our best F-scores were: 0.66
(laughter), 0.77 (non-laughter) using RF, and 0.65 (laughter),
0.80 (non-laughter) using k-NN. Their results were obtained
on a data set including both sitting and standing participants,
and the results on standing participants only were lower than
ours. In our study, we only use the standing data (thus,
potentially more difficult case, as Griffin et al. showed in [8]).

IV. SYSTEM PROTOTYPE

We applied the results of our study to design and implement
a system prototype using low-cost consumer hardware and
lightweight algorithms to detect laughter from body move-
ments. The architecture of our system prototype is depicted
in Figure 6. We exploit a Kinect sensor5, a laptop, two
polystyrene markers (to simplify tracking of shoulder move-
ment), and the freely available EyesWeb XMI platform.

A. Setup

In Figure 6b, the user sits on a stool in front of a computer
screen with a Kinect device on top of it, wearing lightweight
green polystyrene markers on her shoulders. The user’s posi-
tion puts some constraints on her degree of movement (the user
has to remain seated and look at the screen), introducing some

5http://www.xbox.com

limitations on the features we can extract in the prototype. For
example: legs are not visible, arms never move because of the
table, the user’s head and trunk are always facing the camera.
However, head and trunk movements are measurable, as well
as the shoulders due to the green markers.

Tracked markers are highlighted in red on the user’s silhou-
ette in Figure 6. The user’s silhouette, automatically extracted
by Kinect, is segmented in two regions based on the position
of the markers: head and trunk (H and T areas respectively in
Figure 6). The Kinect SDK also provides as output the distance
of the user’s silhouette from the sensor: we consider head and
trunk distance in a separate way; we define D as the difference
between head and trunk distances (i.e., it approximates trunk
leaning).

B. Feature Vector

With respect to the 13 features F1-F13 described in Section
III-B1, our real-time system uses 9 features K1-K9 computed
in real-time with EyesWeb XMI. The first two (K1 and K2) are
the same as before (F1 and F2): they measure the head’s hor-
izontal and vertical displacement of the head’s 2D barycenter.
Three features (K3, K4 and K5) measure torso movements:
1) periodicity of trunk (K3) approximates abdomen shaking
(F5) and trunk rocking (F7) by checking whether distance D
(head vs. trunk distance) varies in a periodic way; 2) maximum
amplitude of distance D (K4) measures trunk straightening
(F6); 3) trunk impulsiveness (K5), computed as the ratio
between peaks height and duration of D, corresponds to trunk
throwing (F8). Considering the limitations and constraints on
the user’s degree of movement, we implemented an analysis of
the user’s shoulders to overcome the missing information about
the user’s legs and arms. Left and right shoulder periodicity
(K8 and K9), computed by checking whether shoulder vertical
position varies in a periodic way, correspond to shoulder
shaking (F13). Two new features were introduced, inspired
by [7]: shoulder energy (K7) and correlation (K8). These 2
features benefit from the prototype setup: with the user sitting
in front of a camera it is easier to compute them. Features
regarding legs (F3 and F4) and arms (F9 to F12) can not be
computed with this prototype setup.

C. Automated Classification and Discussion

A data set consisting of 367 laughter and non-laughter
segments from 5 participants was created. Participants were
asked to perform two different tasks from those presented in
Section III-A: an individual one, that is, watching video clips
alone; and a social one, that is, playing the “Yes/no” game via
Skype. At the beginning, the participant was invited to play the
“Yes/no” game via Skype with one of the experimenters. Then,
the participant was asked to choose and watch from internet
a comedy clip she liked (e.g., tv shows, clips from movies),
lasting about 4-6 minutes, and then a comedy clip that the
experimenters previously selected. Finally, the participant had
to play for a second time the “Yes/no” game.

Two classifiers were trained and run on the data set: SVM
and Kohonen’s SOM (Self Organizing Map). The first one
is described previously, the second one exhibits two main
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differences: 1) it executes quickly, and 2) the configuration
of the map can be updated in real-time: that is, it can adapt
to the movement features values that characterize a user. We
did not yet exploit the latter capability in our prototype, but
previous work showed that this approach can be used to create
reflexive interfaces [35]. SVM had a performance (F-score) of
0.73 (Precision 0.75, Recall 0.73). For the SOM the F-score
was 0.68, (Precision 0.65, Recall 0.73), and Accuracy 0.69.

The classification results are comparable with the results
obtained in our study presented in Section III. However, in
this setup, we use less precise data (Kinect and video instead
of MoCap), and the setup has some constraints: participants
are sitting, and their movements are limited. In such a setup the
laughter detection from full-body movement might be easier,
as Griffin et al. showed in [8]. Thus, while the first aspect
could influence negatively the detection, the second might
counterbalance the lower performance of the input sensors.

V. CONCLUSION

In this paper we presented techniques to detect laughter
solely from body movements. For this purpose, we developed
laughter detection algorithms based on 13 full-body movement
features extracted from motion captured data and grounded in
a laughter body movement annotation schema [20]. The algo-
rithms were applied to a data set of 801 manually segmented
laughter and non-laughter episodes with a total duration of 73
minutes. These episodes consisted of spontaneous full-body
behaviors collected during social multi-person activities (e.g.,
social games). In this context, the use of other modalities
to detect laughter is challenging since different participants’
utterances (i.e., speech and laughter) overlap each other contin-
uously and participants are very mobile, making face tracking
difficult. The data set is available for research purposes. The
obtained classification results improve the current state-of-
art: discriminative classifiers (SVM, RF, k-NN) outperformed
probabilistic classifiers (NB, LR) and slightly higher classifi-
cation results were obtained in comparison to the results of
previous work. Moreover, in our work on laughter detection
we compare automated detection with the human ability to
recognize laughter from body movements on the same data
set. We found that the overall performance of our algorithms
was similar to the performance of the human observers but
automatic classification algorithms obtained better scores for
laughter detection (although they were worse for non-laughter
detection). Thus, machines can surpass humans in laughter
detection from full-body movement in situations involving
sensory deprivation (e.g., when no audio modality is available).
A prototype system for automating the detection of laughter
using low-cost motion tracking was introduced and evaluated.

To create laughter-sensitive interfaces, several open research
questions remain unanswered. The automatic real-time laugh-
ter segmentation of continuous body movement is still an
open challenge. Fusion algorithms must take into account the
entire palette of human interaction modalities: initial work in
this direction proposed by Petridis and colleagues [13] does
not yet consider body movement. Classification of different
laughter types also has to be addressed. Initial work on this

topic was carried out by Griffin and colleagues [36], who
tried to distinguish between “hilarious” and “social” laughter.
Future research should also address the detection of different
communicative intentions of laughter, to communicate irony
for example, from body movement. The analysis of full-body
movement can be particularly useful for detecting behavior
regulation, that is, when one tries to inhibit laughter.
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