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ABSTRACT
Eating meals together is one of the most frequent human social
experiences. When eating in the company of others, we talk, joke,
laugh, and celebrate. In the paper, we focus on commensal activities,
i.e., the actions related to food consumption (e.g., food chewing,
in-taking) and the social signals (e.g., smiling, speaking, gazing)
that appear during shared meals. We analyze the social interactions
in a commensal setting and provide a baseline model for automati-
cally recognizing such commensal activities from video recordings.
More in detail, starting from a video dataset containing pairs of
individuals having a meal remotely using a video-conferencing tool,
we manually annotate commensal activities. We also compute sev-
eral metrics, such as the number of reciprocal smiles, mutual gazes,
etc., to estimate the quality of social interactions in this dataset.
Next, we extract the participants’ facial activity information, and
we use it to train standard classifiers (Support Vector Machines and
Random Forests). Four activities are classified: chewing, speaking,
food in-taking, and smiling. We apply our approach to more than 3
hours of videos collected from 18 subjects. We conclude the paper
by discussing possible applications of this research in the field of
Human-Agent Interaction.
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• Computing methodologies → Computer vision; • Human-
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1 INTRODUCTION
Eating together in a group, often called “commensality” [36], is
one of the most profound social experiences. It does not matter
whether it is a business lunch, a romantic date in a cozy restaurant,
or a family Christmas dinner; commensal events are occasions
to consume food and talk, meet new people, share experiences,
socialize, and socially entertain ourselves. Several positive impacts
of commensality can be observed, including balanced food in-taking
and better food choices, positive triggered emotions, and well-being
[4, 13, 16]. Conversely, a lack of social eating may negatively affect
mental and physical health [19, 45].

Recently, researchers in HCI started to investigate how inter-
active technologies and artificial intelligence could contribute to
improving commensality experiences [34, 41]. Examples of such
technologies include using video-conferencing tools to share eat-
ing moments (e.g., video-conferencing tools [11]) or developing
Artificial Commensal Companions [17, 29] - embodied agents (e.g.,
social avatars and robots) that provide company to humans during
meals.

The interaction around the table is quite peculiar, as the involved
partners constantly shift their attention between the conversation
and the food. Not only are we interacting with one or more part-
ners simultaneously, but we are also focusing on them and the
consumed food and drinks. Moreover, commensal events follow
specific social rules and culture-based rituals (such as passing food,
serving the wine, positions at the table, etc.) that make commensal
interaction distinctive and unique. Finally, commensal interactions
are profoundly multimodal, since facial expressions (e.g., chewing,
smiling), gaze, and body actions (e.g., food in-taking) accompany
speech and other sounds (e.g., slurping).

Considering the ubiquity of the commensal experience, it is sur-
prising that commensal activity recognition models are still scarce.
The paper addresses this research gap by providing a first com-
mensal activity recognition model that considers various activities
during shared meals. Notably, the term “commensal activities” in-
cludes actions related to the consumption of the food (e.g., chewing,
in-taking) and the social signals (e.g., smiling, speaking, gazing,
passing the food, cheering...). So far, researchers have only ad-
dressed these activities separately. Our work is probably the first
attempt to address the variety of (nonverbal) behaviors that may
appear during the commensal experience.

To reach this goal, we use data containing several pairs of friends
sharing meals online. This form of commensality became popular
during the Covid-19 pandemic. For this work, we perform manual
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annotation of nine shared meals. This allows us to analyze the social
signals of remote commensal partners. The paper’s final part illus-
trates a first “baseline” recognition model. While the commensality
experience is undoubtedly multimodal, we start our exploration by
focusing on video data only. We extract information about facial
activity from videos and apply a supervised feature-based machine
learning approach for commensal activity classification. Our goal
is also in line with previous studies on automated detection of mul-
timodal behaviors, e.g., speaking [5] and laughter detection [35],
using video data only.

The rest of the paper is organized as follows. In the next sec-
tion, we briefly present previous works on eating and social signal
detection. In Section 3 we introduce the dataset and the annota-
tion. Section 4 explains details of the recognition models and the
validation results. In Section 5 we present possible applications.

2 STATE OF THE ART
While we are unaware of any research on video-based activity
recognition in commensality settings, some related works were
realized in assistive technology, in which robot-based systems were
used, e.g., to feed a person. For instance, the system in [37] delivers
food from a bowl to the user’s mouth. The user selects a preferred
task via the GUI on a tablet. The robot automatically estimates
food location, scoops it and places it inside the user’s mouth. The
system uses a 3D mouth pose estimator and a wrist-mounted RGB-
D camera. In the same line, [10] use depth images to track the
user’s mouth and a separate vision system mounted on the robot
to collect information about the amount of acquired food on the
robotic spoon.

A few more works focus on tracking users to measure and im-
prove their eating habits. Rouast and Adam [39] propose video-
based detection of food in-taking gestures using deep learning. Ca-
david and Abdel-Mottaleb [9] discriminate between chewing and
non-chewing facial actions, such as talking, by exploiting spectral
analysis of facial features. The approach builds on the observation
that chewing movements are usually periodic while non-chewing
ones are not. In a recent technical report [6], Bi and Kotz describe
a system with a head-mounted camera to discriminate eating vs.
non-eating behaviors. Recently, Hossain et al. [22] proposed an
automatic bite and chews counter using a pre-trained AlexNet net-
work. It is worth noticing that this work uses the data collected in
a commensal setting, where three persons are sitting at the table.

Several techniques exist for eating-related activities (such as
chewing and swallowing) detection, which use wearable devices
(e.g., Amft and Tröster [2], Bi et al. [7], Fontana et al. [15]). For in-
stance, Fontana et al. [15] developed a wearable system composed
of a jaw motion sensor, a hand gesture sensor, and an accelerometer
placed on the chest. The system is integrated into a smartphone
equipped with a food in-taking recognition module that uses dedi-
cated sensor fusion and pattern recognition techniques. It can detect
food in-taking with an average accuracy of 89.8%.

In Mendi et al. [31], bites-taken rate and eating speed are mea-
sured using an accelerometer placed on the user’s wrist. Rahman
et al. [38] use Google Glasses to track head movements and to show
that inertial data from the device and standard machine learning
techniques can be used to recognize human’s eating activities.

Regarding audio processing, Hantke et al. [20] classify normal
speech and eating speech and detect the type of food consumed
while speaking. Individual bite weight prediction is carried out
from acoustic data through an ear-pad sound sensor by Amft and
colleagues [1]. Finally, a multimodal approach for eating recog-
nition combining head and wrist motion (captured with Google
Glass and smartwatches on each wrist) with audio (custom earbud
microphone) is proposed in [32].

Regarding the social dimension of eating, Kiriu et al. [27] detect
whether a person is eating alone or in the company of others, using
a smartwatch accelerometer data and several metrics of a smart-
phone. Several works in the field of Social Signal Processing [8]
focus on detecting single social behavior such as smiling, laughing,
and speaking. Still, none of them is performed in a commensality
setting. For instance, Beyan and colleagues [5] detect the speaker
in the group by processing video data only. Unlike traditional audio
processing approaches, they perform upper body motion analysis
using deep learning techniques. Support-Vector Machine (SVM)
combined with hand-crafted features is proposed in [14] for the
automatic classification of spontaneous vs. posed enjoyment smiles
from a video. The latter is a type of smile frequently playing the
role of a social signal [30]. Similarly, Griffin and colleagues [18]
distinguish between hilarious and social laughter using motion cap-
ture data of body movements, hand-crafted features, and traditional
machine learning techniques, e.g., Random Forests.

From the above summary, it is evident that, although there exist
some works that focus on single activity detection/recognition, they
do not focus on the variety of activities present in a commensal
setting. Eating recognition is usually done in a single-person setting
(and under lab conditions). At the same time, social signals are
analyzed in various contexts, but none of the works was realized in
a commensal setting. We introduce the first commensal activities
recognition model to address this gap in the following sections.

3 DATASET AND ANNOTATION
One possible reason for the lack of commensal activities recognition
models in the literature could be the lack of suitable datasets. Such
datasets should contain audio and video data (although other sen-
sors might also be considered, see the previous section) of at least
two commensal partners sharing a meal in an ecological setting
(e.g., kitchen, restaurant, etc.). Their data should be collected possi-
bly in a low-invasive manner, not to compromise the experience
(both in a social and gastronomical sense).

3.1 Dataset
We collected recordings of participants pairs (i.e., dyads) eating
together in a video call. We asked them to prepare a single-course
meal (e.g., some pasta) in advance and to eat in the company of
a friend or relative. Due to the Covid-19 restrictions in most of
the world in 2021, participants used online meeting software to
share their meals. Apparently, this form of commensality may still
provide a sense of belonging and togetherness to remote commensal
partners [11]. At the same time, this setup allowed us to collect
audiovisual data of spontaneously behaving people eating in an
ecological setting. Indeed, they consumed meals in their natural
environment (e.g., kitchen at their homes) and in the company
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of people they knew well. Moreover, we expected that, due to
the Covid-19 restrictions, the use of a teleconference tool for this
purpose was not unusual for the participants as it could have been
some time ago. In more detail, we recruited participants pairs by
asking them if they were interested in the study and willing to
participate. After receiving their confirmation, we emailed each
participant the instructions and an identification code. Then, we
fixed an appointment for each pair, and, on the appointment date
and time, we recorded them sharing a meal in a video conference.

Figure 1: The data collection setup

Figure 1depicts the technical setup. Participants sat in front of
their computer’s camera, so their faces and upper bodies were
visible to the interaction partner. One of the experimenters was
present during the call to supervise the recording process, but the
experiment’s camera and microphone were turned off, so as not to
interfere with the interaction. The video-conference software used
for data collection permits the creation of a single video file of the
two participants in sync (see Figure 2). The videos are at 25 fps and
with a resolution of 1280 × 720 pixels (synchronized view).

Figure 2: Participants 1 and 2 chatting while remotely eating.

Participants could freely choose any conversation topic they
wanted during the meals. However, we provided a subsidiary list
of conversation topics to facilitate the chat in case they did not feel
at ease finding a discussion topic.

Twenty-two people participated in the data collection. Before
the data collection, we asked participants to provide basic personal
data. The participants’ gender was balanced (with 56% of females),
and the majority (72%) were between 18 and 24 years old. Most of
them declared to know very well their interaction partners. Before
the recordings, participants signed a formal consent allowing us to
collect their data and share it in an anonymized version (following
the EU GDPR rules).

3.2 Manual Annotation
A trained annotator manually annotated the commensal activities of
the 18 participants using the ELAN software [44] (due to technical

issues, the audio recordings of two pairs were lost). Even if the
goal of the annotation process was to annotate only the visible
behaviors of the participants, the annotator used both audio and
video information to perform this task. We annotated the following
commensal activities:

• activity 1 - speaking
• activity 2 - food/drink in-taking
• activity 3 - chewing
• activity 4 - smiling/laughing
• activity 5 - gazing

As for the gaze behavior (activity 5), the annotation distinguished
between a) “gaze at plate” and b) “gaze at commensal partner”.

This set of labels is a combination of activities related to food
consumption (activity 2, activity 3, activity 5a) and social signals (ac-
tivity 1, activity 4, activity 5b). In particular, smiling is an important
social signal [28] that may serve several functions, such as regulat-
ing the interaction flow and turn-taking [25]. It may also help to
estimate the quality of interaction [12]. For example, annotations
of speaking and smiling can be used to estimate the social bonds
between partners [23]. At the same time, detecting food in-taking
(activity 2) might be used to estimate the rhythm and velocity of
eating (see, e.g., [39]). In the annotation, the food in-taking event
starts when the fork movement begins to be visible in the camera
frame and ends when the food is put into the mouth. Thus, it differs
from activity 3, i.e., chewing the food.

The annotator annotated each person and activity separately.
Indeed, different commensal activities may be performed simulta-
neously by the same person (e.g., speaking and eating), or, the same
activity (e.g., chewing) can be performed by two or more partners
simultaneously. Thus, annotations of the activities can overlap, e.g.,
when the person 𝑖 speaks and eats simultaneously or when persons
𝑖 and 𝑗 speak simultaneously.

The average duration of annotated videos is 9 minutes and 23
seconds (with a minimum of 5 minutes and 18 seconds and a maxi-
mum of 16 minutes and 17 seconds). The total time of the annotated
videos is 95 minutes and 57 seconds (each video shows two persons,
see Figure 2).

The manual annotation provides interesting information about
pairs eating remotely. Figure 3 shows the results of the annotation
process. As expected, the two main activities are speaking and chew-
ing. The percentage of time dedicated to speaking or chewing varies
a lot between participants, from 19% (speaking) and 21.1% (chewing)
to 51.4% (speaking) and 60.9% (chewing). The average percentage
for speaking is 34% (SD=9.1%), and the one for chewing is 40.1%
(SD=11.5%). The smiling and food in-taking activities appear more
rarely. The minimum percentage of smiling is 1.2%, the maximum
is 29.1%, and average is 14.5% (SD=7%). Finally, the percentage of
time dedicated to food in-taking is stable across participants, from
6.5% to 17%, with an average of 11.6% and a standard deviation
of 3.3%. Regarding gaze behavior, surprisingly, participants spent
a high percentage of time looking at each other, as the label look
towards other person was used between a minimum of 28.6% and
a maximum of 73.6% of the time (average 51.3%, SD 14.2%). That
is, the participants look at the screen displaying the commensal
partners for around half of the meal time. Finally, the look at plate
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action was annotated between a minimum of 19.7% and a maximum
of 62.9% of the time (average 37%, SD 14.9%).

Starting from the above annotation, for each pair, we computed
metrics to inform us of the quality of the social interaction. We
checked the percentage of time participants speak simultaneously
(H1). High values may indicate low cohesion of the partners [23],
but, in the case of remote meetings, it can also be caused by a poor
Internet connection. In both cases, it may negatively influence the
perception and satisfaction of the interaction. We also computed
the percentage of mutual (H2) and non-mutual gazes (H3) and their
ratio (H4), as well as the percentage of mutual (H5) and non-mutual
smiling time (H6) and their ratio (H7). To check whether or not
the interaction between commensal partners is balanced, we also
computed speech imbalance H8: we take the absolute difference
between the number of frames in which the first participant speaks
and the second participant does not speak and the number of frames
in which the second participant speaks and the first participant does
not speak, normalized by the total number of frames in the segment.
We applied a similar approach to compute smile imbalance (H9).
The idea is that if both partners speak/smile about the same amount
of time, H8/H9 get close to 0; when one speaks/smiles longer than
the other, H8/H9 gets higher. The speech and/or smiles imbalance
may be an essential social feature indicating, e.g., the dominance
of one of the partners [21]. Results are reported in Table 1.

Again, interesting differences can be observed between the par-
ticipants pairs. The interaction of the pair P1-P2 is characterized by
the highest gaze ratio (149.18) and the second highest smile ratio
(42.16), which means that the mutual gaze and smile are remarkably
long for them. In particular, the mutual gazes are longer than the
sum of non-mutual gazes. The pair P3-P4 could be placed at the
other extreme, with the lowest gaze and smile ratios (33.17 and
1.10). When summing H8 with H9, P3-P4 also appears to be the
most imbalanced pair, while P7-P8 is the most balanced one.

In general, from these results, it can be deduced that the interac-
tions are smooth and rich. The percentage of overlapping speech
time is only 1.6%, on average (with a maximum of 3.6% of the time);
the duration of the mutual gaze is, on average, 27.85% (with a mini-
mum of 17%), while at least one person of the pair is smiling, 22%
of the time (with a maximum of 35.42%).

Results also show that the range of activities considered in the
annotation might be very useful to describe the quality of the inter-
action, and in particular, the social dynamics. Being able to detect
these activities automatically would help to improve such analyses
in the future. In the next section, we provide a baseline method for
classifying 4 out of the 5 activities considered in this section.

4 COMMENSAL ACTIVITIES CLASSIFICATION
In this section, we aim to show that using video data only is feasi-
ble for commensal activity recognition. Our baseline model uses a
feature-based approach applied in the past to solve other research
questions in Affective and Social Computing [35]. The main novelty
is applying such an approach to the specific domain of commensal
activity recognition. For this reason, we use only two classification
algorithms and apply standard methods for extracting nonverbal
behaviors from video data. While other communication channels

(e.g., gaze and upper body movements) are also relevant for com-
mensal activity recognition, in this first attempt, we focus on facial
expression only.

a b

c d

Figure 3: The percentage of time each participant dedicates
to one of four annotated activities: 1) speaking, 2) food in-
taking, 3) chewing, 4) smiling. P1-P18 (x-axis) is the partici-
pants’ ID.

4.1 Data Preparation
A single video frame offers a snapshot of reality, from which, how-
ever, it is difficult, if not impossible, to understand whether the
recorded person is eating, speaking, or not doing any of the ac-
tivities of interest. For example, let us imagine that, in one frame,
we see a person with his mouth closed (see Figure 4). Their mouth
could be in that position because of different reasons: 1) they were
not speaking for an extended period (e.g., they are listening to

Figure 4: Sample frames of participant 5, classes 2 - speaking
(upper row) and 4 - chewing (lower row). These samples show
that, by considering single frames instead of time windows,
the two types of activities will look very similar either be-
tween them (see, for example, frames 1 and 5 of each row) or
compared to other activities (e.g., with class 5 - smiling, see
frame 3 in the upper row).
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Table 1: Social metrics on the dataset. The values of H1-H3, H5-H6, and H8-H9 are expressed as time percentages. We also
report the identifier of the corresponding pair for minimum and maximum values.

ID Name Minimum Min. Pair Maximum Max. Pair Average
H1 Overlapping speech 0 P3-P4 3.6 P5-P6 1.67
H2 Mutual gaze 17.11 P1-P2 49.95 P3-P4 27.85
H3 Non-mutual gaze 33.49 P1-P2 51.57 P3-P4 43.22
H4 Ratio mutual/non-mutual gaze 33.18 P3-P4 149.18 P1-P2 69.11
H5 Mutual smile 0.19 P3-P4 12.00 P1-P2 6.14
H6 Non-mutual smile 6.73 P5-P6 35.43 P11-P12 22.64
H7 Ratio mutual/non-mutual smile 1.10 P3-P4 46.79 P15-P16 27.53
H8 Speech imbalance 0.45 P7-P8 20.1 P15-P16 8.77
H9 Smile imbalance 0.84 P7-P8 16.76 P9-P10 7.1

the other person speaking); 2) their lips are in a short pause be-
tween two words (or even syllables); 3) they are in a pause between
one chewing and another. Thus, we focus on sequences of frames
annotated as activities 1-4, and we create fixed-length segments
attributing them labels of classes 1-4. But, as mentioned earlier,
a participant can perform more than one activity simultaneously.
So, we decided to skip all the annotated video frames with more
than one label. Thus, when two activities partially overlap, we only
consider the video frames from the beginning of the first activity to
the beginning of the second activity (that is, from the point in time
in which the first and second activity starts to overlap) and from
the end of the first activity to the end of the second one. That is,
for the moment, we skip the video frames in which both activities
appear together.

Regarding the length of the segments, we consider three different
segment lengths: 10, 25, and 50 frames. We choose the segment
length of 25 as it corresponds to 1 second of the data. We believe
that the activities we are considering (smiling, chewing, speaking)
usually last about, at minimum, 1 second. We compare them with
2 seconds segments (50 frames), which can be seen as an upper
bound, as some of the activities, such as short utterances or food in-
taking, might last at most 2 seconds. However, we obtained several
relatively short frame sequences in segmenting the data due to
dropping overlapping annotations. Thus, we also check whether
more fine-grained segments of 400ms (10 frames) can allow for a
more (or less) effective activity recognition. Due to the segmenting
process, the activities lasting less than a given segment length (i.e.,
10, 25, 50 frames) are discarded (12% for 10 frames sequences; 30%
for 25 frames sequences; 52% for 50 frames sequences).

Table 2 shows the final number of segments per class. We can
see that classes are imbalanced. During a meal, the most frequently
appearing activity is speaking (class 1, 45.9%, 45.0%, and 43.3%), and
the next one is chewing (class 3, 31.9%, 33.8%, and 38.7%). That is
not surprising, as the video recordings cover only the actual meal
time (theywere immediately interrupted when participants finished
eating). Less frequent activities are food in-taking (class 2, 11.6%,
10.6%, and 6.9%) and laughing/smiling (class 4, 10.5%, 10.6%, and
11.1%). In particular, a low number of 2 seconds segments of class 2
shows that this activity might often be shorter than 50 frames.

At the same time, we also observe significant differences between
participants. For instance, in the case of 10 frame segments, the
number of class 1 segments varies across participants, from 107 to

629. Class 2 segments range from 34 to 217, class 3 from 73 to 575,
and class 4 from 16 to 202.

As our dataset consists of video frame sequences, we use the
freely available software called OpenFace [3] to extract facial fea-
tures. In particular, we focus on the intensity of the 17 Action Units
(AUs) computed by OpenFace on each video frame. Then, we calcu-
late six statistical measures on the AUs of each segment: min, max,
mean, standard deviation, skewness, and kurtosis. Using these six
measures for each feature, the input vector of the classifier has a
size of 6 × 17 = 102.

4.2 Experiments
The presented study uses two machine learning approaches: Ran-
dom Forest (RF) and Support Vector Machines (SVM). We choose
these two techniques as they have been widely used in the past to
classify human internal states and nonverbal behavior (e.g., [33, 35]).
We perform a set of experiments using different segment sizes and
validation methods. All the data is normalized before training using
z-normalization.

In the first step, we tune, train, and test the two models on
original dataset and using cross-validation method. The first one
is an SVM with a Radial Basis Function kernel on the original
unbalanced dataset. We use grid research for parameters tuning
with𝐶 being consecutive powers of 10 in the range 0..4 and 𝛾 being
consecutive powers of 10 in the range−6.. − 1; the parameter search
uses a 5-fold cross-validation with 𝐹_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 score. We also use
a 5-fold cross-validation for the outer loop. We repeat the same
training and testing procedure for the 3 segment lengths (10, 25,
50). The second model is RF, for which we use a Random search
for parameters tuning in a 3 folds cross-validation, limited to 100
randomly picked parameters combinations. Again, we use a 5-fold
cross-validation for the outer loop, and we repeat the procedure
for 3 segment lengths.
In a second step, we train and test SVM and RF models using the
leave-one-subject-out method.
In a third step, we repeat the approach described in the first step
on a balanced dataset. Balancing was performed by combining
two different undersampling algorithms and an oversampling one:
1) Random UnderSampler and SMOTE OverSampler; 2) NearMiss
UnderSampler and SMOTE OverSampler. As a result, in both cases,
the samples number for all classes becomes identical to the initial
average (computed on all classes) number of samples.



ICMI ’22, November 7–11, 2022, Bengaluru, India Niewiadomski et al.

Table 2: Number of segments per class

Class 1 Class 2 Class 3 Class 4 Total
10 frames 7594 1920 5273 1741 16528
25 frames 2636 622 1978 621 5857
50 frames 987 158 882 253 2280

Table 3: Classification results using cross-validation on the original dataset

Length Macro-Avg Precision Macro-Avg Recall Accuracy Macro-Avg F-score Weighted F-score
RF 10 68.38 56.31 70.09 59.36 68.29
SVM 10 66.9 56.54 69.1 59.38 67.62
RF 25 68.29 57.01 71.02 60.04 69.34
SVM 25 68.4 59.71 71.76 62.50 70.59
RF 50 70.18 56.22 73.81 58.65 71.91
SVM 50 66.34 61.64 73.64 63.50 73.07

4.3 Results
In Tables 3 and 6 we report the macro-average precision, macro-
average recall, macro-average, andweighted F-score, as well as accu-
racy obtained with two validation methods on the original dataset.
In Table 7 we report the results for the class-balanced dataset. From
Table 3 can be seen that the results in terms of accuracy and F-score
are similar for SVM and RF (e.g., Macro F-score: 58.7 − 63.5 and
Weighted F-score: 67.6 − 73.1). When comparing the accuracy of
SVM with RF for each segment size separately, no significant dif-
ferences were observed for 50 frames and for 25 frames (measured
with Wilcoxon signed rank). Still, the accuracy of 10 frames RF was
better than the accuracy of 10 frames SVM (𝑍 = −2.023, 𝑝 < 0.05).
The difference between Macro and Weighted F-score shows that
unrepresented classes obtain a lower F-score. Despite that, the re-
sults are above the chance level in all the experiments. As expected,
the results with 10 frames segments are, in general, slightly worse
than the results for the other 2 segment sizes (25 and 50).

The confusion matrices for RF and SVM for 25 frame segments
are presented in Tables 4 and 5. In these two tables, the results for
all the testing sets are aggregated. As shown by the tables, better
results are obtained for the most numerous classes. The best result
is obtained for speaking (i.e., class 1, 84.9% and 82.9%), while the
worst one is obtained for smiling (i.e., class 4, 29.8% and 36.1%).
Smiling (class 4) and food in-taking (class 2) are very often wrongly
classified as speaking (class 1). In several cases, chewing (i.e., class
3) is wrongly classified as speaking (about 21.0% and 18.8%).

Table 4: Confusion Matrix for RF, segments of 25 frames.

Class 1 Class 2 Class 3 Class 4
Class 1 2239 33 289 75
Class 2 216 232 150 24
Class 3 416 29 1504 29
Class 4 291 38 107 185

Results of leave-one-subject-out validation (see Table 6) are
worse in terms of accuracy and F-score. This is not surprising,

Table 5: Confusion Matrix for SVM, segments of 25 frames

Class 1 Class 2 Class 3 Class 4
Class 1 2186 47 309 94
Class 2 181 265 150 26
Class 3 373 47 1528 30
Class 4 253 31 114 224

considering the different number of segments per class of each
participant. Results are still above the chance level.

Considering that unbalanced classes might negatively influence
the training, we perform another set of experiments using two
under-/over-sampling techniques on the training set in each of five
folds of the cross-validation (and keeping the original test sets).
Here, we balance the global number of samples per class, but we
do not balance the number of samples per participant. Results are
in the Table 7.

Balancing the train set resulted in a slight improvement of the
RF results (but not those of SVM). The best F-score is 64.81, and the
best accuracy is 72.14. When comparing the accuracy of different
machine learning techniques and balancing approaches, significant
differences were observed for all three segments’ sizes (measured
with Friedman tests): 𝜒2 (3) = 8.04, 𝑝 < 0.05 for 50 frames, 𝜒2 (3) =
13.776, 𝑝 < 0.05 for 25 frames, and 𝜒2 (3) = 11.88, 𝑝 < 0.05 for
10 frames. To sum up, we can say that, although two commensal
activities, speaking and chewing, are recognized quite well using
25 and 50 frames segments, we can still observe some confusion
between these two classes. Unfortunately, the remaining two classes
obtained much worse results. Even balancing the training set did
not help. The substantial differences in F-score between the most
and most minor numerous classes suggest that we should extend
our dataset. For example, we could ask the same participant pairs
to share another online meal.

The worse results for the class 2 segments can be explained by
the face occlusions happening during that activity due to the fork
moving towards the mouth. Additional hand movement tracking
could help improve this class’s recognition rate by adopting a mul-
timodal approach in future work. At the same time, many smiles
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Table 6: Classification results using leave-one-subject-out validation

Length Macro-Avg Precision Macro-Avg Recall Accuracy Macro-Avg F-score Weighted F-score
RF 10 55.18 46.61 60.07 48.65 58.12
SVM 10 55.88 49.1 62.06 50.8 60.53
RF 25 58.54 50.77 64.2 52.9 62.69
SVM 25 58.9 52.72 65.45 54.6 64.22
RF 50 59.25 50.47 67.62 50.73 65.54
SVM 50 53.75 51.75 65.93 52.12 65.3

Table 7: Classification results using cross-validation on the balanced dataset

Algorithm Length Undersampling M.-Avg Pr. M.-Avg Rec. Accuracy M.-Avg F-score W. F-score
RF 10 NearMiss 59.39 64.65 65.55 60.78 66.63
RF 10 RandomUnderSample 62.72 65 68.85 63.57 69.18
SVM 10 NearMiss 56.35 60.59 62.72 57.55 63.67
SVM 10 RandomUnderSample 59.05 59.67 65.71 59.32 65.82
RF 25 NearMiss 61.35 66.13 68.14 62.98 68.92
RF 25 RandomUnderSample 63.53 66.87 70.01 64.81 70.49
SVM 25 NearMiss 58.52 62.70 65.44 59.95 66.23
SVM 25 RandomUnderSample 61.43 61.94 68.03 61.66 68.12
RF 50 NearMiss 61.6 64.25 70.3 62.05 70.96
RF 50 RandomUnderSample 62.42 65.27 72.14 63.54 72.61
SVM 50 NearMiss 62.07 63.96 68.02 61.7 69.33
SVM 50 RandomUnderSample 63.4 63.3 71.62 63.27 71.72

are wrongly labeled as speaking and chewing. Indeed, some Action
Units appearing in a smile may also occur while chewing. The dif-
ference can be in the duration of the activation of this facial activity.
We will extend features accordingly in future works.

5 POSSIBLE APPLICATION: ARTIFICIAL
COMMENSAL COMPANIONS

In line with the research themes of ICMI 2022, we would like to
discuss in more detail one application of the presented research: the
creation of Artificial Commensal Companions, i.e., virtual agents
or social robots that could enable companionship to humans while
eating [29]. We expect that such companions will allow human
interaction partners to benefit from the positive effects of commen-
sality, even when physically alone [34].

Artificial agents need to sense (nonverbal) behaviors from, e.g.,
video data to build natural interaction with human partners. They
detect relevant human nonverbal behaviors and react to them ac-
cordingly. For example, the SAL character [40] can detect the non-
verbal behavior of a human speaker and generate appropriate non-
verbal feedback (i.e., backchannels, such as head nods). Interaction
with a social agent develops in turns, so the agent needs to detect
the most appropriate moment to take the turn to avoid interrupting
the human interaction partner while they are speaking. So, Artificial
Commensal Companions should be able to detect and appropriately
react to significant events in a commensality setting, e.g., to detect
if the human partner is chewing food, so they might not be able to
respond to the companion’s utterance immediately. Consequently,
novel computational models are needed, considering these aims;

we need models for recognizing the activities that most commonly
appear in commensality settings.

While some first attempts at Artificial Commensal Companions
were already made (e.g., [17, 26, 42]), their sensing and interaction
skills are still quite limited. For example, in [17] the companion can
track the user’s hand position to understand when the human is
taking food. Recognizing a larger set of commensal activities is es-
sential for developing more complex interactions with Commensal
Companions.

6 CONCLUSION AND FUTUREWORK
In this paper, we focused on commensal activities analysis and
recognition. The manual annotation of 9 pairs remotely eating was
used to 1) analyze the social interaction in a remote commensality
setting and 2) to develop a baseline recognition model.

Regarding the first point, we showed that such a type of interac-
tion could be smooth and entertaining for the commensal partners.
While it was not possible (due to COVID19 restrictions) to collect
the data of the same participants in the presence and compare them
to the ones collected online, we noticed several positive aspects of
remote commensality. Participants maintain gaze contact and talk
to each other most of the time during the meal; they display a rela-
tively high number of smiles/laughter. At the same time, significant
individual differences were observed between the participants in
terms of eating-related activities.

Moving to the second point, we used the manual annotation to
train models for automatic recognition of commensal activity. We
showed that it is possible to classify four activity types, namely
chewing, speaking, food in-taking, and smiling, above the chance
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level by processing face low-quality video data of naturalistic in-
teractions and applying standard video processing methods and
machine learning. To the best of our knowledge, this is the first
attempt to classify these four commensal activities using video data
only. Differently from previous works that focused on recogniz-
ing either eating-only activity (i.e., chewing) or social signals (i.e.,
smiling, laughing) only, we consider these activities together, pro-
viding a first attempt to classify them in a real-life commensality
setting. We applied our approach to more than 3 hours of data and
18 subjects.

It is essential to notice that our aim was not to obtain the highest
classification results, as this is an ongoing work. We acknowledge
that more advanced machine learning techniques need to be ex-
plored in the future. The results reported are just a starting point
toward systems able to recognize commensal activities. A critical
aspect of commensality interaction is that two or more activities
often overlap (e.g., speaking and chewing, or speaking and smil-
ing). The current model does not address these more complex cases.
We consider using Multi-Label classification for this purpose after
extending the dataset.

Moreover, other or more fine-grained commensal activities need
to be introduced. For instance, distinguishing between different
types of laughter and smile (e.g., hilarious Vs. feedback) in the
commensality setting can be of high importance. Last but not least,
in this work, we focus on facial expressions only, but we will add
upper body movements and gaze.

The dataset used in this work has some limitations. First, the
number of participants is relatively small, and the labels are im-
balanced. We are currently working on extending the number of
recordings and annotations that will share the same protocol. Sec-
ond, the dataset’s recording conditions were relatively stable: for
example, the participants were instructed about where to place their
laptops/webcams. So, in the future, the dataset could be extended by
considering less constrained setups in which, e.g., interaction part-
ners are present in the same physical space (public areas, canteens,
restaurants).

We are convinced that commensal activity recognition mod-
els may have several applications. Apart from creating Artificial
Commensal Companions (see the previous section), we aim to use
them to study the dynamics of the human-human interaction in
commensality settings. For instance, such models could be used
to improve and tune the “hand-made” analyses presented in this
paper. Also, they will allow us to build models of social interactions,
e.g., to quantify the relationship between interaction partners auto-
matically or to classify the type of the commensality event(s) (e.g.,
business lunch vs. romantic dinner). Moreover, the quantitative
measures in traditional commensality research are often based, e.g.,
on food in-taking or similar metrics. Their manual annotation is
very time-consuming, and thus we could replace it with automatic
systems. Other applications go beyond commensality settings. Apps
designed to improve eating habits (e.g., technology-based interven-
tions for fast-eaters, see, e.g., [24]), assistive technology for people
with motor/physical disabilities [10, 37] and technology aiming
to enhance the gastronomic experience (e.g., by introducing the
multi-sensory food interaction [43]) would also benefit from the
automatic recognition of commensal activities. We hope this work
may boost the research in commensal activity recognition and thus

enhance our knowledge about this universal human experience.
For this reason, the annotation and the AUs extracted from the
videos will be made available for research purposes after the paper
publication.
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