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ABSTRACT

In this paper we present a low-intrusive approach to the detection
of expressive full-body movement qualities. We focus on two qual-
ities: Lightness and Fragility and we detect them using the data
captured by four wearable devices, two Inertial Movement Units
(IMU) and two electromyographs (EMG), placed on the forearms.
The work we present in the paper stems from a strict collabora-
tion with expressive movement experts (e.g., contemporary dance
choreographers) for defining a vocabulary of basic movement qual-
ities. We recorded 13 dancers performing movements expressing
the qualities under investigation. The recordings were next seg-
mented and the perceived level of each quality for each segment
was ranked by 5 experts using a 5-points Likert scale. We obtained
a dataset of 150 segments of movement expressing Fragility and/or
Lightness. In the second part of the paper, we define a set of fea-
tures on IMU and EMG data and we extract them on the recorded
corpus. We finally applied a set of supervised machine learning
techniques to classify the segments. The best results for the whole
dataset were obtained with a Naive Bayes classifier for Lightness
(F-score 0.77), and with a Support Vector Machine classifier for
Fragility (F-score 0.77). Our approach can be used in ecological
contexts e.g., during artistic performances.
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1 INTRODUCTION

Expressive quality of movement is one of the most important as-
pects of the Human-Human communication of high-level messages
(e.g., emotional states, social signals) [8]. Expressivity of move-
ment represents the way in which, for example, a gesture is per-
formed. It carries high-level information, such as the emotional
intention of the movement, or its social meaning.

The current approach to expressive movement analysis in the
scientific community usually consists in defining movement fea-
tures (e.g., speed, acceleration, direction, energy, and so on) and
then to extract and exploit them to define models of higher-level
information (e.g., emotional states, social bonds). Recent computa-
tional models and analysis techniques were developed to automat-
ically compute and analyze different movement expressive quali-
ties, e.g., [10, 15, 20], see [21] for a more complete review.

Automated analysis of nonverbal expressive qualities of full-body
human movement opens a broad range of applications: for exam-
ple, therapy and rehabilitation, systems and interfaces enabling
deeper experience of audio-visual cultural content (e.g., in muse-
ums) and in general novel expressive multimodal interfaces.

In this paper we focus on two such expressive qualities: Light-
ness and Fragility and we propose computational model to distin-
guish between these expressive qualities using low-intrusive and
low-cost sensors. The choice of the expressive qualities to focus
on is motivated by collaboration with the artists. Our approach is
characterized by a continuous collaboration and cross-fertilization
between science and art. That is, besides being grounded on scien-
tific evidence, e.g., from psychology and motor sciences, the move-
ment qualities we analyze also stem from discussion with chore-
ographers and dancers, i.e., the most skilled people in conveying
expressivity through movement. Moreover, most of the existing
works use high precision motion capture devices to detect the ex-
pressive quality. Using MoCap during a live performance: 1) is not
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practical (becouse a long time is needed to dress dancers, the sys-
tem needs to be calibrated before use ), 2) it may limit the dancers’
movements (inertial MoCap), 3) is difficult in public spaces (opti-
cal MoCap). Kinect is sensitive to 1) changing light conditions, 2)
number of participants, 3) dimensions of the stage. In our work,
instead, we present a study aiming at developing a low-intrusive
approach to expressive qualities detection, using data from various
type of wearable sensors such as Inertial Movement Units (IMUs)
and electromyogram (EMG). Such an approach enables ecological
validity of data collection and the development of systems that can
be used outside the scientific laboratory.

Our approach is structured as follows: first we create a dataset
which focuses on two movement qualities: Fragility and Lightness.
The dataset is next segmented and annotated by experts who rank
the perceived level of the expressive quality in a segment. Then, we
define a set of features on IMU and EMG data inspired to these qual-
ities and we extract them on the corpus. Finally, we propose models
to classify segments displaying the two qualities using our features
and supervised machine learning techniques. The work presented
in the paper is part of the 3 years EU ICT Project DANCE!. The
aim of the project is to translate expressive movement qualities
into the auditory domain by means of interactive sonification, al-
lowing blind and non-blind people the participation in the dance.
This paper focuses on the algorithms for the analysis of two expres-
sive qualities. Interactive sonification models are out of the scope
of this paper.

The paper is organized as follows: Section 2 provides a brief re-
view of previous work on movement analysis, whilst Section 3 de-
scribes the background works that inspired this research. Section
4 presents the dataset of dance performances we collected. Section
5 describes the features we extracted from the dataset. Section 6
is dedicated to the statistical analysis performed on the extracted
features and Section 7 to the classification models of Fragility and
Lightness. Finally, Section 8 presents an application of the algo-
rithms in the artistic performance and Section 9 concludes the pa-
per and outlines possible further work.

2 STATE OF THE ART

2.1 Classification of Movement Qualities

Since a few years, several approaches were proposed for detec-
tion and classification of expressive movement qualities inspired
by art. Most of them use high-precision motion capture devices to
compute one or more expressive qualities. Camurri and colleagues
[6, 7] recorded professional dancers performing non-propositional
movements with different emotional content. They carried out sub-
jective (i.e., human) and objective (i.e., automated) evaluation of
the communicated emotional content and found out that subjects
ratings can be explained by a small set of low-level features.
Truong and colleagues [27] used a machine learning approach
for gesture recognition based on descriptors inspired by the Laban
Movement Analysis (LMA) [16]. More than 80 descriptors were
considered in the paper, which were inspired by different Laban
qualities. For example, 10 feature vectors (5 for each hand) were
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proposed for the Laban’s Flow component. They were: mean, stan-
dard deviation, ratio between the maximal and mean values, num-
ber of local maxima, and the relative temporal instant of the global
maximum of hand’s trajectories jerk. Authors did not try to deter-
mine explicitly the underlying Laban qualities, but they applied
them to detect gestures. Next, they extracted the descriptors and
applied machine learning algorithms (e.g., SVM, RF, and so on)
on the Cambridge Gestural Performance Database [11] containing
Kinect data of several basic iconic and metaphoric gestures. Clas-
sification performance is around 97% (F-score).

Ran and colleagues [24] built a dataset of 550 movement seg-
ments captured with a Kinect sensor, and developed machine learn-
ing algorithms to detect Laban qualities. They used a large set
of descriptors: 100 features related to Laban’s qualities and other
6000 describing the Kinect skeleton data. Next, Multitask Learning
was applied to 18 non-disjunctive Laban qualities (Effort Actions,
Shape Qualities, and Shape Change) obtaining an F-score of 0.6.

Hachimura and colleagues [13] developed a system to identify
characteristic poses from data of motion captured dancing move-
ments. The characteristic poses correspond to the following four
Laban Movement Analysis (LMA) components: Space, Weight, Shape,
and Time. First, they computed four high-level features, each of
them addressing one component. Next, by observing the change
over time of these feature values, body movements corresponding
to the different LMA components were extracted. In the last step,
the authors compared the results of automatic analysis with ex-
perts annotation.

Swaminathan and colleagues [25] proposed a Bayesian fusion
approach for identifying the LMA Shape quality from motion cap-
ture data. Their method uses a dynamic Bayesian network (DBN)
to process movement features across the body and across time. The
averaged results are Recall 94.9% and Precision 83.13%.

Alaoui and colleagues [1] recorded professional dancers per-
forming four different full-body movement categories from Emio
Greco’s vocabulary: Breathing, Jumping, Expanding, and Reduc-
ing. Then, they extracted a set of 6 movement qualities to drive a
mass-spring system: Verticality, Extension, Leg opening, Shifting
of weight, Periodicity, and Quantity of Motion. By showing sub-
jects the animation of the mass-spring system, they demonstrated
that the 6 movement qualities driving the mass-spring system can
successfully communicate the 4 target movement qualities.

Kitsikidis and colleagues [14] exploited multiple Kinect depth
sensors to compute the body joints position of a dancer perform-
ing traditional Greek dances. They proposed a fuzzy logic model
to detect the quality of the dancer’s performance, considering the
evaluation of an expert of traditional Greek dances as baseline.

Regarding other types of input data (i.e., other than motion cap-
tured data), Ward and colleagues [28] proposed an exploratory study
of electromyography (EMG) signals corresponding to the execu-
tion of different expressive Laban’s Effort qualities, such as Flow
being Free or Bound. EMG devices were placed on the dancer fore-
arms and EMG signal amplitudes were computed from the cap-
tured signals. Authors suggest that this setup can be useful for au-
tomatic classification of expressive qualities.
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2.2 Multimodal Analysis of the Movement

Multiple modalities provide complementary information that, if
considered as a whole, allow one to detect expressive qualities. For
example, respiration is of paramount importance to explain expres-
sive features, and is strongly related to physical activity: previous
works analyze respiration in walking and running rhythm [5] or
rowing [4]. In this context, Lussu and colleagues [18] proposed a
multimodal approach to distinguish between movements display-
ing three different expressive qualities: fluid, fragmented, and im-
pulsive movements. The approach is based on the Event Synchro-
nization algorithm [23], which is applied to compute the amount
of synchronization between two low-level features extracted from
the sound of the respiration captured by a standard microphone
placed near to the mouth, and the whole body kinetic energy es-
timated from motion capture data. Results showed that fragmented
movements display higher average synchronization than fluid ones.
Lopes [17] proposed a multimodal model for gesture segmenta-
tion based on IMU and EMG sensors placed on the forearm. The
performance of the mono and multimodal algorithms were evalu-
ated through 60 sequences performed by 6 users. The monomodal
approach (IMU only) obtained the best results in regards to the
total segmentation error, whereas the multimodal approach was
particularly successful for hand motion movements only. A similar
combination of IMU and EMG sensors placed on the user forearm
was used by Freixo [12] to detect 12 different classes of gestures.
Masurelle and colleagues [19] proposed a multimodal (motion
capture, audio) approach to recognize isolated dance steps using
Gaussian mixture models (GMM) and hidden Markov models (HMM).

The system exploited motion features extracted from 3D sub-trajectories

of dancers’ body-joints (generated from motion capture data), us-
ing principal component analysis (PCA). These sub-trajectories were
obtained thanks to a footstep impact detection module (obtained
from recordings of piezoelectric sensors on the dance floor). Using
HMMs, the system recognized gestures among six possible classes
with a classification performance of 74% (F-score).

3 BACKGROUND

Artists from the performing arts - and in particular dancers, actors,
and musicians - can contribute with a consolidated tradition since
centuries on expressivity: on how to convey expression and emo-
tion to an audience by means of non-verbal full-body movement
and gesture. They are therefore an important source of inspiration
to HCI researchers to build computational models capable to ana-
lyze expressive qualities and too build novel multimodal interfaces
for non-verbal full-body interaction. Our approach to expressive
movement analysis is an example of such intersection of science
and art, where HCI, biomechanics, as well as artistic and humanis-
tic theories complement each other.

The EU ICT Project DANCE is a perfect example of this ap-
proach: a successful encounter between science and art applied
to expressive movement analysis. In the past 2 years, during sev-
eral meetings, interviews, and movement recording sessions with
the famous contemporary dance choreographer Virgilio Sieni 2, we
defined an expressive vocabulary of movement basics allowing a

http://www.virgiliosieni.it
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person to communicate, for example, emotional states. Our interac-
tion with the choreographer did not involve studying dance move-
ments in a traditional sense. Instead, we asked him to focus on the
movement qualities involved in Human-Human communication in
real-life.

We rely our work on the framework for the analysis of expres-
sive content conveyed by full-body movement proposed by [9].
The framework is composed of four layers. The first layer is de-
voted to capturing and preprocessing data from physical sensors
(video, motion capture, audio, or wearable sensors). The second
one computes low-level motion features at a small time scale (i.e.,
observable frame-by-frame), such as kinetic energy or smoothness.
The third one segments the flow of movements in a series of single
units (or gestures) and computes a set of mid-level features such
as fluidity or impulsivity, i.e., complex features that are usually ex-
tracted on more than one joint, and require significantly longer
temporal intervals to be observed (i.e., between 0.5 s and 5 s). Fi-
nally, the fourth layer represents even more abstract concepts such
as emotional states of the displayer, social attitudes, user’s engage-
ment in a full-body interaction.

For the work reported in this paper, we consider two qualities
identified by the choreographer V. Sieni, and belonging to the third
layer of the framework: Lightness and Fragility. In the following
sections, we provide a brief description of each one of them.

3.1 Lightness

A necessary condition for a Light movement is the presence of
Fluidity. Further, a movement expressing Lightness should include
at least one of the following characteristics: (i) it should exhibit
a low amount of downward vertical acceleration following grav-
ity (in particular on forearms and knees), (ii) each possible down-
ward acceleration should be counterbalanced by an opposite “har-
monic” upward movement (simultaneous or consequent); (iii) ver-
tical downward acceleration movements should be finalized on the
horizontal plane. An example of a dancer performing Light move-
ments can be seen at: https://youtu.be/5Yk35QgyQ1A

3.2 Fragility

Fragility is defined as a sequence of non-rhythmical upper body

cracks and leg releases. It emerges, for example, when moving at

the boundary between balance and fall, resulting in short move-
ments with continuous interruption and re-planning of motor plans.
The resulting movement is non-predictable, interrupted, and un-
certain. An example of a dancer performing Fragile movements

can be seen at: https://youtu.be/XcEhc0_uuvA

4 DATASET
4.1 Recordings Protocol

For the purpose of this work, we recorded a dataset of short perfor-
mances of dancers asked to perform full body movements display-
ing a requested expressive quality. At the beginning of each ses-
sion, dancers were given the definitions of the expressive qualities.
Next, the dancers were asked to perform an improvised choreogra-
phy containing movements that, in the opinion of the dancer, ex-
pressed convincingly the quality. 13 female dancers participated in
the data collection process. They had different dance backgrounds
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Figure 1: Setup for multimodal recordings

(classic dance, pop, contemporary dance), and different levels of
professional experience. They performed five repetitions of each
expressive quality, each trial had a duration of 1 minute. All dancers
were wearing black clothes.

4.2 Data Streams
We recorded data streams from the following devices:

e 5 IMU sensors (x-OSC3) placed on the dancer’s body limbs;
the data is captured at 50 frames per second; each frame
consists of 9 values: (x, y, z) of accelerometer, gyroscope,
and magnetometer;

e 2 video cameras (1280x720, at 50fps);

e 2 EMG armband placed on the dancer’s forearms (MYO*);
the data is captured at 50 frames per second. Each armband
streams 8 different EMG signals at each frame;

e one wireless microphone (Mono, 48 kHz) placed close to the
dancer’s nose, recording the sound of breathing;

Figure 1 shows the recording setup. Data was recorded and syn-
chronized using the freely available EyesWeb XMI research plat-
form®. Synchronization of data streams is obtained by using SMPTE
timecodes, i.e., a standard which is widely used in multimedia con-
tent production. In this paper, we use only the data from the 2 IMUs
placed on the participant’s hands and 2 EMG bracelets placed on
the forearms.

4.3 Segmentation

The recorded video streams were evaluated by dance experts and
expressive movement analysis experts. For every trial, they identi-
fied segments of about 10s each corresponding to a uniform, coher-
ent sequence of movements. End of a segment should correspond
to the end of the gesture or phase of the gesture. In a consequence
some segments have slightly different duration. For each dancer
and each expressive quality, between 5 and 6 segments were cho-
sen. We obtained 150 segments. The details of the segmentation
are presented in Table 1.

3http://x-io.co.uk/x-osc
https://www.myo.com
Shttp://www.infomus.org/eyesweb_eng.php
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Table 1: List of segments

Quality  No. Segments Mean duration Total duration
Lightness 77 10.2 s 13 min 6 s
Fragility 73 10.4 s 12 min 41 s
Total 150 10.3 s 25 min 46 s

4.4 Ranking

250 250

200 200
150 150
100 100
‘I I
o . I
0 1 2 3 4 0 1 2 3 4

Figure 2: Distribution of the votes in the ranking study:
Lightness (left) and Fragility (right)

Five raters watched the 150 segments resulting from the seg-
mentation. They observed each video segment and they were asked
to rate the global level of Fragility and Lightness they perceived by
using two independent 5-point Likert scales (from 0 to 4).

Exemplary frames of the recordings are displayed in Figure 3.
Videos were displayed in random order. The raters did not hear
any audio. We blurred the face of the dancer to prevent the rater to
identify her and to avoid that facial expressions could affect the rat-
ings. The raters were given the definitions of the expressive qual-
ities and they were explained the features to be computed on the
data (see Section 5 for more details on features computation). The
latter was made to steer the raters to the measurable aspects of the
performances (for example, by letting them know that there is no
computation involving feet movements).

We checked the inter-rater reliability between the raters using
weighted Cohen k and Pearson correlation r. The mean pairwise
linear weighted Cohen agreement for 5-point scale values are: 0.30
for Lightness and 0.40 for Fragility. The mean correlation values
are: 0.46 for Lightness and 0.58 for Fragility.

Figure 3: Two sample frames from the recordings

Next, for each segment we computed the average scores RankLI
and RankFR of the perceived Lightness and Fragility between the
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5 raters. As Table 2 shows, many segments received only medium
average levels of Lightness and Fragility ranks. Additionally, Light-
ness scores are better distributed than Fragility scores. Indeed, many
segments were perceived as not expressing high Fragility even when
the dancers were asked to do it. This might be due to different
dance backgrounds of the dancers. In particular, Fragility is a cue
that does not appear in classical ballet and thus it might be diffi-
cult for some of the dancers to express it in a way that raters can
perceive it. Consequently, we decided to define four subsets con-
taining segments of high and low rank for each feature:

e FRy,., contains 48 segments (out of 150) for which the ranked
average Fragility score was below 0.4,

® FRp;gp contains 44 segments (out of 150) for which the ranked
average Fragility score was above 2,

e LIj,,, contains 48 segments (out of 150) for which the ranked
average Lightness score was below 1.2,

e Llpig4p contains 40 segments (out of 150) for which the ranked
average Lightness score was above 2.3.

The choice of the thresholds was made to balance the number of
segments in each subset.

5 FEATURES AND DESCRIPTORS

We now describe the multimodal features that we extracted from
our dataset. The first two are inspired by the movement qualities
described in Section 3 and are computed from two IMU (Inertial
Movement Unit) sensors placed on the participant’s wrists. The
second two are computed from two EMG sensors placed on the par-
ticipant’s forearm. For each feature we extract a set of descriptors
(e.g., mean, standard deviation, and so on). The following sections
illustrate the features and the corresponding descriptors.

5.1 From IMU

5.1.1 Feature Q1. Feature Q; is inspired by the definition of
Lightness reported in Section 3.1. Q; is computed in two steps:
first, for each IMU sensor i, we compute the ratio W; between the
vertical component of kinetic energy and the total (on the 3-axis)
energy. Next we compute:

2w
Q1=1- —21:21 (1)

For the multimodal classification presented in Section 6, the follow-
ing descriptors are computed: MEANQ1, STDo1, MINg1, MAX 1.

5.1.2  Feature Qy. Symmetrically to Q1, feature Q3 is inspired
by the definition of Fragility reported in Section 3.2. To extract it,
we apply the following heuristic: we consider the start and stop

Table 2: Number of segments per rank interval

Lightness Fragility
Average rank 1 or less 39 73
Average rank between 1 and 2 60 39
Average rank between 3 and 2 35 32
Average rank between 4 and 3 16 6
Total 150 150
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instants of both hands movements; then we measure the synchro-
nization between start/stop instants of both hands (i.e., we check
whether both hands start/stop to move simultaneously). If synchro-
nization emerges in one or both hands then we identify this mo-
ment as an Upper body crack. Finally, we integrate over time the
result to obtain Qs.

The algorithm for Q detection is illustrated in Figure 4. Input
consists of the 3-axis linear acceleration of the two inertial sensors
attached to the participant’s wrists. For each hand, the algorithm
detects movement start and stop by looking for acceleration and
deceleration peaks. The output of this process are four binary time
series, where a 1 or 0 encode whether a peak is detected or nor
respectively. Peak synchronization is computed between left/right
hand starts and stops events separately by using the Multi-Event
Class Synchronization (MECS) algorithm [2] (kernel uniform, and
Tau = 10 samples) on a sliding window buffer. If starts or stops
events are synchronized, then an Upper body crack is detected. Q
is finally computed as the integral over time of the output of the
upper body detection crack process on a time window. For the mul-
timodal classification presented in Section 6, the following descrip-
tors are computed: MEANQ3, STDg2, MINg, MAX ;.

5.2 From EMG

The EMG signal captured on the forearm (8 sensors per armband)
was successfully used for gesture recognition in [22, 26]. Recently,
it was also used in the study on Laban qualities [28] (see Section
2). Indeed, Fragility segments are composed of movements which
require alteration of muscle tension and relaxation phases, so we
expect to detect them from such a signal. As previously mentioned
in Section 4.2, the MYO armband generates 8 values per frame. Fol-
lowing the literature on EMG signal processing (e.g., [3]) we apply
a low-pass filter on the evolution of these 8 values in time. Next,
for each data frame di, k = 1..N consisting of 8 values x]l.c,j =1..8,
we combine the values of all channels using two methods:

pAE
Ey(dy) = = @)

Ex(dy) = max;(x}) (3)
For each segment of data we apply 6 descriptors. The first four:
mean (MEAN), standard deviation (STD), minimum (MIN), and max-
imum (MAX) are computed according to their well known equa-

tions. Additionally, we also compute Willison Amplitude (WAMP)
and Waveform Length (WL) defined as follows:

N
WAMPE; = 3" f(IEi(dg) = Ei(dg1)), where

= @
if x < threshold

1
flx) = {0 otherwise

N
WLE; = »_ |IEi(dis1) - Ei(dg)l| 5)
k=1
All the descriptors are computed for each hand separately and next
the mean between the descriptors of the two hands is computed.
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Figure 4: Feature Q; extraction algorithm. Acceleration and deceleration phases were extracted on both hands. If synchroniza-
tion between the two hands peaks is present, then an upper body crack is detected.

6 VALIDATION

The features proposed in the previous section were extracted on
the segments in sets FRygyy, FRpigh, Lljory and Llp;gp. Then, we
applied a statistical analysis to check whether there are significant
differences between the values of each feature for the two pairs of
sets: FRyoyy, FRpjgn and Llj,.,, Llpign-

First, the values of all the descriptors were normalized in in-
terval [0, 1]. Next, we applied ANOVA with LIGHTNESS (FR;,.,
vs. FRp;gp) as independent variable and the descriptors MEAN1,

STDg1, MAXg1, MINg1, MEANE, STDE1, WAMPE;, WLE1, MAXE;,

MINE,, MEANEs, STD gy, WAMPEs, WLEs, MAX g2, MINE, as de-
pendent variables (see Table 3). As a result, descriptors MEANQ;
(F(1,86) = 57.743, p < 0.001), MAXo; (F(1,86) = 4.315, p <
0.05), MINp; (F(1,86) = 65.102, p < 0.001) had a significantly
higher value for segments perceived to express a high Fragility,
whilst descriptors STDg1 (F(1,86) = 72.865, p < 0.001), MEANE;
(F(1,86) = 5.918, p < 0.05), STDg; (F(1,86) = 21.383, p < 0.001),
WL (F(1,86) = 4.974, p < 0.05), MAXg; (F(1,86) = 29.814,
p < 0.001) MEANE, (F(1,86) = 4.748, p < 0.05), STDg, (F(1,86) =
12.624, p < 0.01), MAXg (F(1,86) = 11.585, p < 0.01) had signifi-
cantly lower values.
Similarly, we applied ANOVA with FRAGILITY (FRj g+, VS FRpigp)

asindependent variable and the descriptors MEAN 2, STD g2, MAX o2,
MINg2, MEANE1, STDg1, WAMPEy, WLE1, MAXE1, MINg, MEANE,

STDEgy, WAMPE,, WLE2, MAXE2, MINE, as dependent variables
(see Table 3).

As aresult, descriptors MEANg, (F(1,90) = 67.368, p < 0.001),
STDg2 (F(1,90) = 70.368, p < 0.001), MAX g, (F(1,90) = 92.379,
P < 0.001), MINgz (F(1,90) = 20.435, p < 0.001) had significantly
higher values for segments perceived to express a high Fragility
while descriptors MEANE; (F(1,90) = 3.986, p < 0.05), WAMPg;
(F(1,90) = 6.778, p < 0.05), MINE; (F(1,90) = 9.733, p < 0.01),
WAMPE, (F(1,90) = 18.326, p < 0.001), MAXg5 (F(1,90) = 11.576,
p < 0.01) had significantly lower values.

7 CLASSIFICATION

We build two different models: one for Fragility and one for Light-
ness using different supervised machine learning algorithms and a
subset of 11 descriptors out of the 20 described in the previous sec-
tion: i.e., MEANQ1, STDg1, MINg1, MEANQ3, STDg,, MAX 2,
MINQ3, STDg1, MAXE1, MINE; and WAMPE;. We chose the de-
scriptors with correlation score RankFR or RankLI above 0.3 or
below -0.3.

To build the Lightness model we split the dataset into two classes
by applying the threshold of 1.6 on RankLI (i.e., the median of

Table 3: Means and standard deviations obtained for each
descriptor and subset of the dataset. Significant differences
are in bold.

Desc. Lllow LIhigh FRlow FRhigh
MEANG, 0.59 (0.24) 0.90 (0.09) - -
sTho;  0.49(0.21)  0.17 (0.13) - -
Maxg,  0.94(0.19)  0.99 (0.0) - -
MiNg,  0.39(0.23) 0.77 (0.20) - -
MEANG, - - 0.05 (0.10) 0.43 (0.30)
STDo; - - 0.08 (0.14) 0.39 (0.21)
MAXQ, - - 0.09 (0.16)  0.50 (0.24)
MING; - - 0.01(0.02) 0.13 (0.20)
MEAN;, 0.40(0.23) 0.28 (0.18) 0.32(0.19) 0.24 (0.17)
sty  0.47(0.24) 0.25(0.19) 0.31(0.20)  0.29 (0.18)
Maxg  0.51(0.20) 0.28 (0.20) 0.34(0.20)  0.36 (0.19)
ming  0.35(0.20) 034 (0.20) 0.38 (0.20) 0.26 (0.15)
wampg,  0.74(0.12)  0.74(0.16)  0.76 (0.14)  0.68 (0.15)
Wi, 0.36 (0.21) 0.27 (0.19) 0.29 (0.18)  0.24 (0.17)
MEANg, 0.43(0.26) 0.32(0.22) 0.35(0.20)  0.27 (0.23)
stog, 050 (0.23) 0.33(0.20)  0.36(0.18)  0.32 (0.20)
Maxg,  0.85(0.20) 0.68 (0.26) 0.74(0.23)  0.70 (0.28)
MiNg,  0.27(0.18)  0.27 (0.19) 0.31(0.20) 0.19 (0.13)
wampg,  0.73(0.19)  0.73(0.19)  0.77 (0.15)  0.60 (0.23)
WLp, 0.45(0.26)  0.35(0.25)  0.37(0.23)  0.29 (0.24)

RankLI). As a consequence, we obtain 72 segments expressing Light-
ness and 78 expressing no or low Lightness. Similarly, we applied
the threshold of 1.2 on RankFR (i.e., the median value of RankFR)
to split the segments in those where Fragility was perceived (68
segments) and those where no or low Fragility was observed (82
segments).

For both models, we tested the performance of 3 supervised ma-
chine learning algorithms: a Support Vector Machine (SVM) with
polynomial kernel, a Random Forest (RF) and a Naive Bayes (NB)
classifier.

The averaged performance of each classifier was assessed via a
multiple run and Leave-One-Out Method. In our study, we adopted
100 runs. Table 4 shows the performance of each classifier in terms
of average Accuracy, Precision, Recall, and F-score.

Additionally, we also ran the same machine learning algorithms
on the pairs of sets FRygyy, FRpign and Lljgyy, Llpigp (that is, on
the 88 segments that obtained high or low ranks of RankFR) and
the 92 segments that obtained high or low ranks of RankLI. As
expected, performances are higher with Random Forest compared
to the results computed on the whole dataset, obtaining an average
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Table 4: Average Accuracy, Precision, Recall, F-score for all segments

Lightness
Avg. Accuracy Avg.Recall Avg. Precision Avg. F-score
SVM 0.68 0.65 0.67 0.66
NB 0.77 0.79 0.74 0.77
RF 0.75 0.71 0.75 0.73

Fragility
Avg. Accuracy Avg.Recall Avg. Precision Avg. F-score
0.79 0.81 0.74 0.77
0.75 0.59 0.8 0.68
0.77 0.72 0.75 0.74

F-score of 0.86 for Lightness and of 0.8 for Fragility. Table 5 shows
the results.

8 APPLICATION

Algorithms presented in this paper have been exploited in scien-
tific experiments and public events. In particular, they have been
recently presented in the context of an artistic project titled Az-
lante del Gesto_Genova®, by the choreographer V. Sieni. About 150
citizens of Genova (a town located in the north-west of Italy) par-
ticipated to a series of workshops (from January to March 2017),
to gain sensibility about their body expressive movements. The
features algorithms presented in this paper have been used dur-
ing these workshops to help participants to improve their learn-
ing curve. The participants’ expressive movement features have
been translated into sound qualities that they could hear during
the rehearsals/performances. The final performances of this scien-
tific/artistic work took place in several historical sites in the town
on the 24, 25, and 26 March 2017 (see Figure 5). During the per-
formances, one of the dancers worn IMUs on her hands and legs.
The 2 movement features, Fragility and Lightness, were extracted
and translated into audio features. Thus, both the audience and
the other dancers were able to hear the expressive intention of the
sonified dancer.

9 CONCLUSIONS

In this paper, we presented a multimodal dataset of dancers ex-
pressing two movement qualities: Lightness and Fragility. Then,
we described a set of features to analyze the dataset movement
qualities using low-intrusive wearable IMU and EMG sensors. Re-
sults of our statistical analysis show that the proposed features per-
mit to distinguish segments according to the degree of Lightness
and Fragility perceived by human observers. We also developed
two supervised machine learning models to detect Fragility and
Lightness. Our models are able to detect the 2 expressive qualities
with an F-score of 0.77. To our knowledge, this is the first attempt
to combine kinematic and EMG data to detect expressive qualities
in human movement. While most of the previous works in this
field exploit motion capture systems, our set of features works on
a minimal amount of data, captured by only two IMU and EMG
sensors placed on the participant’s hands and forearms. Another
important contribution of this paper is the applied methodology.
By collaborating with dancers and choreographers, we were able
to precisely define, in terms of kinematic features, two important
expressive qualities that have been rarely discussed in the litera-
ture so far.

Ohttps://www.facebook.com/atlantedelgestoGenova

Although the work is inspired by artistic creation and perform-
ing arts are thus a natural application area for it, low-intrusive
detection of expressive qualities may have several further impor-
tant applications in everyday activities. Examples include assistive
technologies, e.g., rehabilitation and monitoring of patients with
motor and cognitive disabilities (e.g., Alzheimer disease), detection
of emotions, cognitive states and personality traits from full-body
movements (e.g., signs of hesitation and inserurity), edutainment
and entertainment systems (e.g., serious games).

In the future, we plan to add other modalities to our model. In
more details, we plan to extract some acoustic features from the

Figure 5: The dancers during the performance at Palazzo
Reale. One dancer has IMU sensors placed on her hands (see
the black straps on her wrists), and her movement qualities
are translated into sound qualities in real-time.
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Table 5: Average Accuracy, Precision, Recall, F-score for “best” segments

Lightness Fragility
Avg. Accuracy Avg.Recall Avg. Precision Avg. F-score | Avg. Accuracy Avg. Recall Avg. Precision Avg. F-score
SVM 0.76 0.73 0.74 0.73 0.76 0.84 0.79 0.81
NB 0.80 0.73 0.81 0.76 0.76 0.84 0.77 0.80
RF 0.86 0.9 0.82 0.86 0.77 0.81 0.78 0.80

dancer’s respiration audio signal recorded during the dataset col-
lection process described in this paper. The recent work by Lussu
and colleagues [18] shows that it is possible to infer information
about expressive quality of movement from such a kind of data. We
also plan to evaluate the contribution of each source of the data
(IMU, EMG, respiration) to the classification. Last but not least, in
the framework of the DANCE Project, we aim to apply the method-
ology discussed in this paper to extend the vocabulary of qualities
we are able to automatically extract and classify.
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