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ABSTRACT
Technological advancement has profoundly impacted how people
share meals, fostering research interest in new forms of commen-
sality such as tele-dining and eating with artificial companions.
Consequently, there is a need to develop computational methods
for recognizing commensal activities, that is, actions related to food
consumption and social signals displayed duringmeal-time. This pa-
per introduces the first dataset that consists of synchronized video
data of co-located dining dyads. The dataset is annotated with key
social signals such as speaking activity, smiling, and food-related
activities like chewing and food intake. Unlike previous studies that
use remote settings, this work emphasizes the differences between
online and co-located setups. A set of machine learning experiments
is conducted on our and existing datasets, reaching the best F-score
of 0.82. The cross-dataset analysis between co-located and online
datasets also evidences the significant disparity between these two
settings. While mixing co-located and online recordings may in-
crease the model’s generalizability, we notice strong differences
between the two settings, highlighting the importance of in-person
data recordings for accurate recognition.

CCS CONCEPTS
• Computing methodologies → Computer vision; • Human-
centered computing → Interaction techniques.
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1 INTRODUCTION
Commensality refers to the act of eating and sharing food, typi-
cally in a social setting [21]. There has been growing interest in
developing computational methods to study commensality, leading
to the emergence of “computational commensality”, which uses
computational approaches to explore various aspects of food and
eating behaviors [18]. Research in these fields has led to various
applications spanning healthcare, well-being, and entertainment.
These applications require models capable of accurately detecting
human actions during mealtime. For instance, a chewing tracker
can monitor chewing activities, supporting individuals coping with
obesity [15]. Robot-assisted feeding systems assist people with
physical or perceptual disabilities by closely monitoring the user’s
condition and delivering food from plate to mouth [2]. Additionally,
Artificial Commensal Companions (ACCs), like the robot FoBo, fa-
cilitate social interactions during eating to mitigate the negative
impacts of solitary dining on mental health [13, 16].

Studies such as [19], which focus on automatically recognizing
commensal activities (defined as key actions such as food intake,
chewing, and social signals like speaking and smiling), used the
data collected during video calls. In contrast, other work [4, 8]
concentrated on co-located settings, which allows for natural and
spontaneous interaction without the delays and interruptions typi-
cal of internet-based commensality. However, these works [4, 8] are
limited in scope, primarily focusing on healthcare and/or assistive
purposes and often overlooking social aspects of eating. To the best
of the authors’ knowledge, an in-person dataset specifically focus-
ing on the synchronized video data of activities, such as consuming
food, mastication, and social signals like speaking and smiling, has
not yet been developed. Notice that the synchronization of the
recordings is an important feature that permits the study of the
interaction dynamics and complexity of the relations between the
commensal partners.

This research aims to fill the above-mentioned gaps through the
following objectives:
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(1) to collect and annotate a new dataset from in-person com-
mensal events;

(2) to conduct baseline experiments using handcrafted features
extracted from spatiotemporal Facial Action Units (AUs) with
Support Vector Machines (SVM) and raw AUs data modeled
with Long Short-Term Memory (LSTM) on the new dataset
to demonstrate the feasibility of automatic recognition;

(3) to investigate whether the performance of the aforemen-
tioned models varies across the datasets of co-located and
online recordings.

We expect that models that deal with the temporal evolution of fa-
cial activity (e.g., LSTM) will outperform standard methods. This is
because several commensal activities display periodic or repetitive
movements and other particularities in the time domain that are
difficult to address with standard approaches (see [19]).

Collecting in-person data (i.e., co-located setting) often requires
more effort than collecting it online (i.e., remote setting). Addition-
ally, it is not unusual for some activities, especially professional
ones, to move often online. Consequently, several online datasets
have been proposed recently on various aspects of human social
behavior [24, 25], while other researchers studied differences be-
tween online and co-located interactions [9, 23]. With another set of
experiments, we will see whether there is a domain gap across the
co-located and online datasets. Answering this question may shed
more light on whether there is a need to collect data in co-located
settings or if online data collection can be used instead.

2 RELATEDWORK
Past research mainly focuses on detecting specific behaviors such as
chewing and food intake, typically for health-related applications,
utilizing diverse sensory types and modalities. Commensal actions
are rarely addressed in their variety. Certain studies employ visual
data to automatically identify activities such as speaking, chewing,
and smiling [3, 19]. For instance, in [11], researchers explore the
automatic detection of children’s smiles and gaze activity.

Audio data is also employed in recognition of commensal activi-
ties. For example, [8] introduces a method for recognizing eating
habits using a necklace-like device that analyzes throat acoustic
signals to detect chewing, swallowing, and breathing. Motion data
is another area of focus (e.g., [10, 14]) with accelerometer and gyro-
scope sensors in smartwatches distinguishing eating, drinking, and
smoking.

Finally, [17] is an example of a multimodal model that integrates
data from body-worn motion and audio sensors to detect eating
activities. The iHEARu-EAT [12] identifies eating conditions from
audio-visual data. Other related studies, such as [28] and [20] utilize
audio-visual data to detect laughter and smiles.

The bite timing prediction model by [22] is used to control robot-
assisted feeding during shared meals. The model was specifically
developed to be used in social dining scenarios, and it used multi-
modal data from all commensal partners. The authors also provide
a Human-Human Commensality Dataset (HHCD) containing 30
groups of three people eating together. While HHCD is most related
to the work presented in this paper, unfortunately, their data lacks
annotation of social behaviors.

Other studies make use of various sensors, including Frequency
Modulated Continuous Wave (FMCW) radar sensors [27] for recog-
nizing eating and drinking gestures, and pressure sensors integrated
into tables [29] for detecting food-related actions such as cutting
and scooping.

3 DATASETS
In this work, we utilized two different datasets: a new dataset,
introduced in this paper, aimed at capturing co-located (i.e., in-
person) dining, and an existing dataset of remote (i.e., online) dining
interactions [19].

3.1 New Dataset: In-person (P) Commensal
Activities

Our dataset consists of audio-visual recordings of co-located pairs
sharing meals. The collection comprises 22 participants (8 females,
14 males, average age 24) across 12 recording sessions, featuring
pairs who either knew each other well or met for the first time. One
pair was recorded twice.

The recordings were conducted in a 3×3 square meter room.
Participants generally consumed similar food, such as pasta or
rice, which required using a fork. Additionally, water and napkins
were provided. Such a setup can be considered a more controlled
setting with limited meal options and minimal background noise.
We believe that these conditions permit the participants to behave
spontaneously and naturally. All participants signed the written
consent before the recordings.

The videos were recorded using two cameras, as shown in Figure
1. Each recording includes the synchronized view of two partici-
pants facing each other. By using OBS Studio software, we guaran-
tee that the recordings of both participants are synchronized. All
the videos were recorded at a resolution of 970×710 with a frame
rate of 25 fps. Some frames from the dataset are presented in Fig.
2. In total, 234 minutes were recorded, with the shortest session
lasting 8 minutes and the longest 39 minutes.

Figure 1: Data collection setup: including the table, the posi-
tioning of the cameras, and the arrangement of the plates.

One annotator conducted the annotations manually in ELAN
[1]. The annotated food consumption-related behaviors include
chewing and food intake, while social signals include speaking and
smiling. The choice of the labels was inspired by the previous work
[19].

3.2 Online (O) Commensality Dataset
An extended version of the dataset presented in [19] was used for
comparison. Compared to the original version described in [19],
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Figure 2: Examples of synchronized video frames from two
different recordings.

this extended version contains nearly half more recordings done
using the same setup. Thus, the extended version consists of 22
videos by 44 participants (26 female) who consumed their meals
online. The total duration of the recordings is 191 minutes and
17 seconds. The participants were predominantly aged between
18 and 30 years. The longest video is 18 minutes and 42 seconds;
the shortest is 5 minutes and 18 seconds. The recordings capture
participants consumingmeals together in front of a laptop equipped
with a webcam in a natural setting such as the kitchen or dining
room. The participants were typically well-acquainted, enhancing
the naturalness of the interactions. All videos were standardized to
a frame rate of 25 fps with resolutions ranging from 1920 x 1080 to
1280 x 316 pixels (synchronized view). The dataset shares the same
annotation schema as the in-person dataset.

3.3 Data preparation
The distribution of commensal activities in both datasets is pre-
sented in Table 1. The percentage of smiling in the in-person dataset
is much lower than in the online dataset, whereas the percentages
for eating, intake, and speaking are similar across the datasets. We
suppose that the small number of smiles can be related to the fact
that in the co-located dataset, some dyads were composed of people
who met themselves for the first time.

The data include the 17 Action Units (AUs) extracted from the
recordings using the OpenFace toolkit [5]. The behavior annota-
tions are aligned with the extracted AUs to ensure accurate cor-
respondence between the detected AUs and the behaviors. After
merging the annotations and AUs, each recording is segmented
into segments of a fixed length of 50 frames (without overlapping).

4 EXPERIMENTS
To address the aims described in Section 1, we performed some
experiments on the two datasets introduced in the previous Section.

Commensal [19] OURS
Activity (Online) (Co-located)
Speaking 1966 (42.6%) 879 (49.4%)
Smiling 643 (13.9%) 64 (3.5%)
Eating 1776 (38.5%) 763 (42.88%)
Intaking 225 (4.9%) 73 (4%)
Total 4610 1779

Table 1: The number of segments per commensal activity

.

4.1 Architecture and training
We applied two approaches: (a) Support Vector Machines and (b)
Long Short-Term Memory. The SVM was chosen as it was used in
the reference work [19]. We compare the obtained results with a
popular method that can handle sequential data, e.g., time series of
facial activity. For this reason, we chose LSTM.

A 5-fold cross-validation was used in line with [19]. We con-
ducted a grid search to optimize hyperparameters for both SVM
and LSTM, using a fixed subset (equivalent to 10% of the entire
dataset) of a single training fold. The SVM hyperparameters in-
cluded the RBF kernel. The parameter 𝐶 , which balances between
maximizing the margin and minimizing classification error, was
tested with values 0.1, 1, 10, 100, 1000, and 10000. Similarly, 𝛾 , deter-
mining the RBF kernel’s reach and fit training data, was explored
with values: 0.0001, 0.001, 0.01, 0.1, 1.

The LSTM architecture used in our experiments consisted of
three LSTM layers. The first LSTM layer has 64 units and takes
an input shape of (50, 17), where 50 represents the time steps, and
17 denotes the number of AUs. The second LSTM layer has 32
units, and the third LSTM layer has 16 units. The output layer is a
Dense layer with 4 units corresponding to the number of classes,
and it utilizes the softmax activation function. The training was
conducted using the ADAM optimizer for 64 epochs, batch size 32,
and the categorical cross-entropy loss function.

We conducted evaluations using two approaches: within-dataset
and cross-dataset. The training, validation, and test splits in the
within-dataset approach all came from the same dataset. In the
cross-dataset approach, we trained the models on one dataset (in-
cluding the hyperparameter tuning based on the performance of the
validation split) and tested them on a different dataset. Finally, we
merged the two datasets and conducted a within-dataset evaluation
on the combined data. As evaluation metrics, we report precision
(Pre), recall (Rec), weighted (w-F1), and macro F1-score (m-F1), and
accuracy (Acc).

4.2 Results
The results of the within-dataset and cross-dataset evaluations are
presented in Table 2. The LSTM outperforms the SVM, indicating
that the raw AU values are more effectively learned and used for
differentiating various commensal activities. As anticipated, the
cross-dataset experiments yield lower performance due to the do-
main gap. However, the hand-crafted features modeled with SVM
generalize better than LSTM, as evidenced by the higher SVM scores
in the P→O and O→P evaluations. This difference may stem from
the fact that the LSTM architecture, including the number of LSTM
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layers, ideally requires adjustment to optimize performance for
different training data sizes. However, in our study, we maintained
a fixed LSTM architecture across all experiments, potentially lim-
iting its adaptability and performance in varying data scenarios.
Once the datasets are merged, the size of the training data increases
importantly. As expected, both models perform numerically better;
however, LSTM surpasses SVM also in this scenario.

5 DISCUSSIONS AND CONCLUSIONS
In this paper, we have introduced a novel dataset collected in per-
son and have utilized it to model the recognition of commensal
activities. For this purpose, we employed SVM with hand-crafted
features from the literature and LSTM to model AUs extracted with
a standalone toolbox. Furthermore, we evaluated these models on a
distinct dataset where interactions occur in an online environment,
which significantly differs from in-person settings. Our findings
highlight that models trained on data from one setting struggle
to generalize well to data collected from a different context, em-
phasizing the critical role of context in behavioral analysis. LSTM
performs better; however, neither method generalizes well across
datasets. LSTM’s performance in cross-dataset evaluations lags
behind SVM.

When a larger dataset of online and in-person interactions is used
in training, the inference performance of both methods improves,
and LSTM outperforms SVM across all metrics.

Despite the online dataset used in this study being larger than the
in-person dataset, the methods employed on the in-person dataset,
especially LSTM, demonstrated superior performance overall. We
hypothesize that the superior video quality in a co-located setting
may enhance the accuracy of AU extraction. Also, online interac-
tions may be impacted by delays or pixelation, which could reduce
AU extraction accuracy. Moreover, the videos in the in-person

Approach Learning
Method Prec Rec w-F1 m-F1 Acc

O→O SVM 0.66 0.57 0.73 0.62 0.74
LSTM 0.83 0.80 0.84 0.81 0.85

P→P SVM 0.69 0.65 0.83 0.67 0.83
LSTM 0.87 0.87 0.93 0.87 0.93

O→P SVM 0.46 0.56 0.66 0.46 0.64
LSTM 0.42 0.55 0.60 0.41 0.55

P→O SVM 0.53 0.44 0.61 0.45 0.64
LSTM 0.48 0.40 0.59 0.41 0.61

M→M SVM 0.65 0.55 0.74 0.57 0.76
LSTM 0.79 0.86 0.87 0.82 0.87

Table 2: The best results for SVM and LSTM are reported.
Here, 𝑂 (i.e., online) refers to the extended version of [19], 𝑃
(in-person) denotes our dataset, and𝑀 represents themerged
dataset of 𝑂 and 𝑃 . In the notation used, the left side of →
indicates the dataset used for training and parameter tun-
ing (with validation split), while the right side indicates the
dataset used for testing. The abbreviations Pre, Rec, W-F1,
M-F1, and ACC stand for precision, recall, weighted F1-score,
macro F1-score, and accuracy, respectively.

dataset were taken in the same environment (lighting, camera posi-
tion, etc.), while the online dataset is much more variable. On the
other hand, a co-located setup allows the commensal partners much
larger freedom and variety of movements, as the participants do not
need to worry about moving out of the camera view, which is often
a concern in online meetings (see, e.g., [30]). In co-located settings,
they can interact physically, e.g., by passing objects such as cutlery
or food or touching each other. These and many other behaviors
may increase the difficulty of commensal activity recognition from
co-located recordings. Nevertheless, the results highlight the im-
portance of increasing the amount of data for better generalization.

Our study is limited regarding the cues used to classify commen-
sal activities, and it only focuses on facial Action Units. As a future
study, we plan to incorporate features e.g., learned from the body
pose [6], and upper body activity [26]. Additionally, we will explore
multimodal approaches as described in [7]. The other research di-
rection will address commensal partners’ relations and interaction
dynamics. For this reason, we will extract information about the
nonverbal behaviors of individuals from the synchronized videos
and focus on the temporal relations between their actions. Later
on, the behavior data of other commensal partners will be used as
context to build better recognition models. For example, it might
be rare for all commensal partners to speak simultaneously, while
it can be quite probable for all to be chewing simultaneously.

In conclusion, we envision that models in detecting social signals
and food-related actions can potentially enhance the functional-
ity of various technologies. Specifically, we anticipate that this
contribution will improve the performance of chewing trackers or
robot-assisted feeding. More importantly, it will contribute to the
development of artificial commensal companions [16], enabling
more natural and smoother interaction between humans and ma-
chines.
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