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ABSTRACT

We propose a novel dataset for studying and modeling facial expres-
sion intensity. Facial expression intensity recognition is a rarely
discussed challenge, likely stemming from a lack of suitable datasets.
Our dataset has been created by extracting facial expressions from
actors across twelve fiction films, followed by crowd-sourced online
annotation of the expression intensity and variability levels. It con-
sists of over 400 automatically extracted video segments ranging
from 3 to 5 seconds, as well as annotations and facial landmarks.
We also present preliminary statistics derived from this dataset.
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1 INTRODUCTION

Numerous models have recently been proposed for emotion recog-
nition in videos (refer to [10, 18] for recent surveys). However, the
topic of facial expression intensity recognition is seldom explored,
with notable exceptions [4, 8, 17, 19, 20, 23]. One of the primary
reasons for this is the lack of suitable datasets for studying facial
expression intensity. In related works, intensity is typically con-
sidered locally and within a specific context, such as the intensity
of particular action units (e.g., local changes in the face involving
one or a few muscles) or of facial expressions associated with spe-
cific emotions (see, e.g., [1, 11, 13, 14]). Humans, however, process
emotion cues in a more holistic manner. Here we thus focus on
overall perception of the intensity in a facial expression, i.e., not
on comparing single frames of one specific expression in terms of
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intensity (e.g., to find their onset, offset). Datasets and/or compu-
tational models that focus on the intensity in this broader sense
are scarce. Moreover, facial expression intensity models should not
be restricted solely to the expression of emotions, as many other
internal states (e.g., engagement [21]) and attitudes (e.g., politeness,
dominance [12]) are often conveyed through facial expressions that
can be evaluated in terms of intensity.

In this paper, we propose a novel dataset to study facial expres-
sion intensity. We extracted short video segments that contain just
one actor’s face from twelve fiction movies. Next, we asked people
to rate the facial expression of the actor in terms of intensity and
variability. The resulting dataset comprises of 409 video segments
ranging from 3 to 5 seconds, rated on a scale of 1 to 7. Movies are
easily accessible resource of a wide variety of expressions related
to both positive and negative emotions, as well as other internal
states, expressed by various characters. On the one hand, using
movies to create affective datasets has been successful in the past,
e.g., [5]. On the other hand, several theorists postulate that there
may be visible differences between spontaneous expressions and
fake (or "acted") ones [6]. However, for our purposes, it is not rele-
vant whether the actors express genuine emotions or they just "act”,
as our focus is solely on the perceived intensity of facial changes.
Another reason for using movies is that the editing techniques
employed in movie production often lead to meaningful expression
segmentation. Typically, actors’ entire facial expressions are shown
in a single shot, and, in fiction movies, there are not many unin-
tentional or meaningless expressions. Contrary to what is typically
the case for data collected in laboratory conditions, e.g. [1], that
are limited to specific emotions [9], the use of movies allows us to
capture a variety of facial expressions that are likely representative
of real life. Because of these characteristics, this dataset can be used
to 1) study human perception of facial expressions intensity, and 2)
develop computational approaches to estimate facial intensity in a
broader, holistic sense.

2 DATASET

Segments from twelve movies with average resolution of 736 X 363
and a mean duration M = 116 minutes were used to extract the stim-
uli presented to human raters. The movies were initially processed
using OpenFace 2.0 [3], that detects facial landmarks [2], [22]. Seg-
ments where a human face was tracked by the software for at least
3 seconds were extracted. This constraint was imposed to prevent
the occurrence of spuriously detected faces in the output set.
OpenFace 2.0 detects several faces in the same frame. If there
are three faces in one frame, this frame will appear three times
in the resulting OpenFace .csv file, where each line describes a
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Figure 1: a) Frame ¢ — 1 with 3 faces recognized; b) Frame ¢
with one face not recognized, and the IDs of the other faces
changed; c¢) Landmarks for computing distances.

separate face. We only track faces OpenFace recognized with high
confidence (success = 1). However, the identifiers assigned to the
faces in the frame ¢ do not necessarily correspond to the same
faces in the previous frame t — 1, see Figure 1a, 1b. We measure
the distance between 2D coordinates (x,y) of specific points (land-
marks) in each face (the nose, ears, chin), and the corresponding
coordinates in the previous frame. We match faces from different
frames if |x;(¢) — x;(t — 1)| < width and |y;(t) — y;| < height,
where: height = w width = MZ_%“_UI
and x; and y; are landmark i coordinates, i € {0, 8, 16,27}, as on
Figure 1c. The pool of 3537 segments that was initially extracted
was reduced by applying the following selection criteria: 1. Max-
imum duration of 5 seconds: Longer segments often contain
more than one expression. These expressions can exhibit strong
variability in terms of intensity, making the rating task challenging.
2. Segments with only one face: Although our procedure can
track multiple faces simultaneously, to avoid ambiguity and keep
the task simple, we excluded segments where more than one face
appears in the frame. 3. Minimum face dimensions: Although
our procedure can detect smaller faces, we excluded all segments
where a human face covers less than 20% of the frame to ensure they
are clearly visible to raters. 434 segments met these criteria. Next,
we removed segments containing unrealistic deformations created
with special effect techniques (e.g., incomplete faces after being
shot) and segments that were erroneously extracted, by which we
mean that two different faces appear in exactly the same position
in two consecutive frames (as described in the tracking procedure
above). The final dataset consists of 409 video segments.

3 ANNOTATION STUDY

To collect human ratings we created an online survey on Qualtrics [16].
409 videos were split randomly into 8 groups to balance the work-
load of each rater. This decision was made after a pilot study in
which we asked 4 people to report when they noticed a signifi-
cant decline in concentration while performing the task. This time
ranged from 18 to 23 minutes, during which they were able to an-
notate 42-55 videos. Their responses are not included in the final
dataset. In the main study, each rater was randomly assigned to
one of the eight video sets. The videos were presented in a ran-
dom order. Raters were allowed to replay a segment multiple times
before answering the questions. Once the answers are submitted,
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Figure 2: a) Ratings distribution for a) intensity; b) variability
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they cannot be changed. Each video starts and finishes with a white
frame to make sure that the raters are not exposed to a face before
and after playing the video. All videos were scaled to the same
resolution 854 X 464 and were evaluated in terms of intensity and
variability using two Likert scales (1-7).

47 participants took part in the study: 32 volunteers and 15
recruited via Prolific [15], and were payed £5. They were given
instructions, definitions of variability and intensity, and asked to
complete training to ensure they knew how to work with the plat-
form. At the beginning of the survey, a definition of intensity and
variability was provided. Intensity: "We refer to the strength or clarity
with which signals are conveyed through facial movements. "Intense”
in this context refers to the strength, vividness, or prominence of the
expressions displayed on individuals’ faces." Variability: "We refer to
the diversity or range of facial expressions observed in the given video.
In this context "variable" implies the degree of differences or varia-
tions in facial expressions displayed by individuals in the video." All
participants gave their written consent and remained anonymous.

To exclude raters who did not carry out the task as instructed,
we included four attention questions per group. In these questions,
raters would see a white number against a black background and
had to set both sliders to match this number. Four participants were
excluded due to failing more than one of these attention questions.

The data collection resulted in 5 ratings per segment. Figure 2
shows the distribution of the ratings for intensity and variability.
Regarding intensity, it can be observed that the rankings are well
distributed, and the dataset contains some stimuli of very low and
very high intensity, with the majority falling somewhere in the
middle. Variability, in contrast to intensity, is somewhat skewed to
the left, suggesting that in the present dataset there are just a few
videos that displays high variability in facial expression. Overall,
we believe that the dataset is suitable for modeling intensity.

4 CONCLUSION AND FUTURE WORKS

We presented a novel dataset for studying the perception inten-
sity in facial expressions, and the development of computational
models of facial intensity. The code developed for this work is
freely available [7]. In future, we plan to extend the ranking study
with more stimuli. In parallel, we will develop a computational
approach with machine learning methods for automatic estimation
of the intensity. Our work may have several implications, mainly in
Human-Computer Interaction (e.g., social robots able to interpret
human nonverbal behavior), entertainment (e.g., video games with
affective feedback), medicine (e.g., pain estimation), well-being, and
research in psychology and cognitive science, among others.
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