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ABSTRACT
Intrapersonal synchronization of limb movements is a rel-
evant feature for assessing coordination of motoric behav-
ior. In this paper, we show that it can also distinguish
between full-body movements performed with different ex-
pressive qualities, namely rigidity, fluidity, and impulsivity.
For this purpose, we collected a dataset of movements per-
formed by professional dancers, and annotated the perceived
movement qualities with the help of a group of experts in
expressive movement analysis. We computed intra personal
synchronization by applying the Event Synchronization al-
gorithm to the time-series of the speed of arms and hands.
Results show that movements performed with different qual-
ities display a significantly different amount of intra per-
sonal synchronization: impulsive movements are the most
synchronized, the fluid ones show the lowest values of syn-
chronization, and the rigid ones lay in between.

CCS Concepts
•Human-centered computing → User interface design;
•Computing methodologies → Motion capture;

Keywords
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1. INTRODUCTION
In this paper we introduce an approach to dance move-

ment analysis in which a set of distinct dance performances
are analyzed and classified according to the dancer’s move-
ment qualities. Our work stems from the analysis of syn-
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chronization of body joint’s velocity in a dance performance.
Despite being a very intuitive quantity, velocity of joints can
be a very descriptive feature: for example, Bernhardt and
Robinson [1] propose to detect emotional states from simple
movement features, such as hands’ speed and acceleration.
Castellano et al. [7] show that emotional states can be in-
ferred from user’s hands’ velocity and acceleration, quantity
of motion, contraction index and directness of movement.
Gross et al. [12] analyze kinematics (by extracting range
of motion and the velocity) and expressive qualities of sim-
ple movements (e.g., knocking at the door) charged with an
emotional intention.

In this paper we propose a method to distinguish between
different movement qualities using a multilayered framework
approach. In such framework low-level features (e.g., sin-
gle joint velocity) are used to compute high level features
(such as fluidity, or emotion). Our goal, in particular, is to
demonstrate that intra-personal synchronization (i.e., the
level of synchronization of the joints composing the kine-
matic chains of a single person) can help to automatically
distinguish movements displaying following expressive qual-
ities: Fluidity, Rigidity, and Impulsivity.

The presented work is part of a more general framework,
that is, the EU ICT H2020 DANCE Project1, aiming at
developing techniques and models for human body move-
ment quality analysis, with a focus on the expressive com-
ponent of non-verbal communication and in particular on
how movement qualities of a dancer are perceived by an ex-
ternal observer. The importance of this challenging scenario
is evident in several domains and applications, such as di-
agnosis of psycho-pathological disorders [31], therapy and
rehabilitation [26], expressive and natural interfaces [4], and
affective computing [2], [10].

Future practical applications of our models and algorithms,
besides the main goals of the DANCE project mentioned
above, can be numerous in many fields. Automated detec-
tion of impulsivity in a video surveillance system could allow
one to identify, for example, dangerous events, during which
people produce impulsive, unusual movements. HCI systems

1European Union’s Horizon 2020 research and innova-
tion programme, grant agreement No. 6455533 (DANCE)
http://dance.dibris.unige.it)



Figure 1: Multi-layered framework for modeling the user’s quality of movement. Each user is represented by
a stack of layers (two users are represented in the figure). At each layer a number of movement features are
extracted based on the features extracted in the lower ones. Moving from bottom to top, we start from the
physical level (e.g., body joints positions and rotation) toward more complex features, models and concepts.
At the same time we pass from instantaneous measurements to larger time scales, that is, the higher we move
in the stack the larger the time needed to extract the movement features becomes. The movement features
extracted at each level are relative to the user modeled by the stack of layers. A subset of features (i.e.,
synchronization, entrainment, cohesion, leadership) can be computed both on a single user (intra-personal
features) and on the features of multiple users (inter-personal features). For example, synchronization can
be computed between the joints’ velocity of a single user or between the emotional state of multiple users.
The features described in the paper are highlighted in bold.

could improve user experience by automatically detecting
user’s rigidity, that could be an indicator of stress, reflected
on muscles tension. In the same way, fluid movements could
indicate relaxation in experienced users.

The paper is organized as follows: in Section 3 we intro-
duce a framework for multimodal analysis of expressive fea-
tures which includes definitions and descriptions of the fea-
tures we take into account; Section 4 describes a dataset we
created containing dance performances characterized by the
qualities we are looking for; Section 5 introduces the tech-
niques we employed to analyze the data; Section 6 presents
the obtained results and finally Section 7 concludes the pa-
per.

2. RELATED WORK
Movement synchronization has been exploited in various

scenarios: Repp [24] studied synchronization in a musical
context: he investigated how musicians are required to co-
ordinate their movements together in order to follow a com-
mon rhythm. In [28], authors created an interactive system
where inter-personal synchronization derived from data cap-
tured by mobile phones controlled the activation of various
audio tracks, and in [29] they used motor synchronization
for social interaction purposes i.e., to identify a possible
dominant person in a group. Authors of [18] introduced

a rehabilitation system based on limbs synchronization that
demonstrated effective in stabilizing the walking of patients
affected by Parkinson’s disease and hemiplegia. In [13] Le-
man et al. show how music might be an excellent domain
to explore non-verbal communication and how synchroniza-
tion and entrainment can be used to measure collaboration
and coalition between users. In [14], authors concentrate on
the effects of beat synchronized walking in human beings on
movement timing and vigor.

3. MULTILAYERED FRAMEWORK
The research work we present in this paper is part of a

more general scenario: modelling human body movement
communication. This is the research context of the ongo-
ing EU ICT H2020 Project DANCE. We are not interested
in physical space occupation, movement direction, or “func-
tional” physical movements of a user: our focus is on the
implications at the expressive level. For example, let us con-
sider the movement “Knocking at a door”. We do not aim
to analyze the functional action of the gesture itself (i.e.,
hitting with a closed hand on the surface of the door), but
the intention that is behind/beyond the performed action
(e.g., the emotional state guiding the lover that knocks at
the door of her beloved) [22]. In particular, our perspective
is on how movement qualities are perceived by an external



Figure 2: The motion captured 3D skeleton of a dancer.

observer.
We conceive quality of movement of single and multiple

users as a multilayered framework [3], illustrated in Figure
1. From bottom to top, the physical layer mainly concerns
kinematics, e.g., trajectories and velocities of joints, or the
shape of a silhouette of the body. Biomechanic features
of single joints at a small time scale (observable frame by
frame) are defined at the low-level features layer: for ex-
ample, “smoothness”, defined in the literature in terms of
minimum jerk [30, 19, 21] or in terms of curvature of veloc-
ity trajectories [16, 17]. A third layer, the mid-level features
layer, addresses more complex qualities, usually extracted
on groups of joints or on the whole body, and requires sig-
nificantly longer temporal intervals to observe them (e.g.,
rhythmic patterns typically require a range of 0.5s - 5s to
be detected [9]). The concepts at the highest layer encom-
passes models and techniques that, based on user’s quality
of movement detected in the lower layers, represent, for ex-
ample, user’s emotional states and social attitudes.

The framework does not only define models for movement
qualities of a single user but it can be extended to a multi-
user scenario. To this aim, a particular subset of features
deals with user’s intra and inter personal movement quali-
ties. It is the case, for example, of intra- and inter-personal
synchronization. This feature can be computed between
the movements of joints of a single user (e.g., to determine
whether the user’s movement is coordinated [17]) or between
the movements of joints of a group of users (e.g., to mea-
sure the level of entrainment in a group of musicians [11]).
Another example is the computation of leadership on both
a single users (to find out which joint is leading movement
of the whole body) and a group of users (to discriminate
between group leaders and followers). The implementation
of the framework is one of the main research activities in the
H2020 EU ICT DANCE project. In the following sections
we describe the three mid-level features we address in this
paper: Fluidity, Impulsivity and Rigidity.

3.1 Fluidity
Fluidity is often considered as a synonym of “good” move-

ment (e.g., in certain dance styles) and is one of the prop-
erties that seem to contribute significantly to perception of
emotions [3]. Fluidity has been investigated by the work of
Caridakis et al. [6] on hands trajectories, where it was com-

puted as the sum of the variance of the norms of the hands’
motion vectors. Piana et al. [21] studied human motion tra-
jectories and defined a fluidity index based on the minimum
jerk law.

We propose the following definition of Fluidity of move-
ment. A Fluid movement can be performed by a part of the
body or by the whole body and is characterized by the fol-
lowing properties: (I) the movement of each involved joint
of the (part of) the body is smooth, following the standard
definitions in the literature of biomechanics [30]; (II) the
energy of movement (energy of muscles) is free to propa-
gate along the kinematic chains of (parts of) the body (e.g.,
from head to trunk, from shoulders to arms) according to a
coordinated wave-like propagation.

3.2 Rigidity
Rigidity is a movement quality strictly linked with the in-

ternal emotional state of a user. Being rigid by performing
a movement can be a consequence of stress, fear or tension.
For example, a stressed person tends to increase the ten-
sion in her muscles, producing rigid movements [5]. A bet-
ter understanding and automatic detection of rigidity could
greatly improve the adaptability of Human-Computer inter-
faces.

In [25] rigidity is considered as one of the motor cues to
recognize emotions and mental states of children character-
ized by Autism Spectrum Conditions and it is measured as of
the relative movement of different parts of the body. More-
over, rigidity is one of the few movement qualities that are
addressed in credibility assessment in the information sys-
tems area. In [27] authors developed automated interview-
ing systems based on kinetic rigidity detection, in order to
detect the amount of non-credible information during an in-
terview.

3.3 Impulsivity
As reported by [20], impulsivity is an important compo-

nent of emotion expression. According to Loewenstein and
Lerner [15], “people commonly display impulsive behavior
when they are hungry, thirsty, sexually aroused, or in ele-
vated emotional states such as anger or fear”. In psychology,
impulsivity is an important component of various disorders,
including e.g., substance use disorders, bipolar disorder, an-
tisocial personality disorder, and so on. In dance, an impul-



Figure 3: Event Synchronization algorithm applied on 3D data.

sive movement can be characterized as, according to Bishko,
“A movement of increasing intensity ending with an accent
is considered impactive”.

In Physics, the impulse is defined as the variation of an
object’s momentum in time. The momentum depends on
the object’s mass and velocity. So basically an impulse cor-
responds to a high variation of the object’s speed or, in
other words, to high object’s acceleration/deceleration. A
similar concept can be found in psychological studies, for
example in [8]: “actions that are poorly conceived, prema-
turely expressed”. That is, an impulse can be considered
as a movement with high acceleration performed with no
premeditation.

Figure 4: Markers and rigid bodies placed on the
dancer’s body. A rigid body is a rigid plate on which
several markers are attached. This configuration al-
lows us to extract not only the position but also the
rotation of body joints. In the figure, the lower left
leg rigid body is highlighted.

4. RECORDINGS AND SEGMENTATION
We recorded short performances of professional dancers

who were asked to exhibit full-body movements with one
among the expressive qualities: Fluidity, Rigidity or Im-
pulsivity. Two professional female dancers participated in
the recording sessions. At the beginning of each session, the
dancers were given definitions of the expressive qualities (see
Section 3). For each expressive quality, the instruction we
provided to the dancers were the following:

1. to perform several repetitions of predefined movements
(e.g., avoiding an imaginary and sudden danger, throw-
ing an object with a wave-like arm movement) by fo-
cusing on the expressive quality;

2. to perform an improvised choreography containing move-
ments that, in the opinion of the dancer, better ex-
pressed the expressive quality;

For the recordings we used a Qualisys motion capture system
sampling dancers’ movement at 100 Hz and synchronized
with a video recording system (1280x720, 50fps). We placed
6 single markers and 11 rigid bodies plates on the dancer
body, as illustrated in Figure 4. The resulting data consisted
of the 3D positions of 19 markers: 6 corresponding to the
single markers plus 11 corresponding to the rigid bodies’
barycenters and 3 corresponding to all the markers attached
rigid body placed on the dancer’s head (see Figure 2).

Two experts in the domain of expressive movement anal-
ysis segmented the recorded data. They were instructed to
select segments that exhibited each expressive quality in a
regular way. Feature segments were not validated in a for-
mal manner: the identification of the most representative
segments is the result of a discussion afterwards with the
domain experts. Thus, segmentation was based on the ob-
server’s perception of the dancer’s expressive quality, and
not on the dancers’ expressive intention. We obtained a
dataset of 60 segments: it contains 10 highly impulsive, 10
highly fluid, and 10 highly rigid segments for each dancer.
The mean segments duration is 5.85 seconds (SD = 3.76)
and the total duration is 5 minutes 51 seconds.

5. EVENT SYNCHRONIZATION EXTRAC-
TION

Our goal is to show that the amount of intra-personal
synchronization, that is, the synchronization between the
limbs’ joints, can significantly contribute to the detection of
expressive qualities.

The synchronization technique we chose for our analy-
sis is the Event Synchronization (ES) algorithm [23]. It is
based on time delay patterns between a pair of time-series
containing event occurrences. The ES extraction process is
summarized in Figure 3. To be computed, ES requires the
following steps to be performed:

1. to conceptually define what an event is in the applica-
tion context;

2. to model the conditions of a new event occurrence;



Table 1: Descriptive Statistics.
Fluidity Rigidity

Dancer 1 Dancer2 Total Dancer1 Dancer2 Total
0.253 (0.145) 0.325 (0.153) 0.289 (0.150) 0.355 (0.255) 0.413 (0.163) 0.384 (0.211)
0.277 (0.146) 0.319 (0.083) 0.298 (0.117) 0.595 (0.188) 0.347 (0.117) 0.471 (0.199)
0.169 (0.075) 0.265 (0.098) 0.217 (0.098) 0.354 (0.276) 0.380 (0.276) 0.367 (0.269)

Total 0.233 (0.131) 0.303 (0.115) 0.268 (0.127) 0.435 (0.261) 0.380 (0.192) 0.407 (0.229)

Impulsivity Total
Dancer1 Dancer2 Total Dancer1 Dancer2 Total

0.532 (0.171) 0.557 (0.275) 0.545 (0.223) 0.380 (0.223) 0.432 (0.220) 0.410 (0.221)
0.730 (0.208) 0.572 (0.256) 0.651 (0.241) 0.534 (0.261) 0.413 (0.200) 0.473 (0.237)
0.530 (0.272) 0.434 (0.229) 0.482 (0.250) 0.351 (0.266) 0.359 (0.220) 0.355 (0.242)

Total 0.598 (0.233) 0.521 (0.253) 0.559 (0.244) 0.422 (0.261) 0.401 (0.213) 0.411 (0.238)

3. to discretize the input signals to obtain output time-
series, containing information about events occurrences
and timings;

In this study, events were defined as abrupt changes of limbs
velocity during the performances. In our dataset we ex-
tracted events by detecting peaks of the velocity module
(velocity is computed as the derivative of position, given
joint’s 3D coordinates frame-by-frame). For each segment S
of N frames in the dataset, we selected three joints of the
right arm Jw, Je and Js (wrist, elbow, and shoulder, respec-
tively) and we extracted the corresponding velocity modules
vw, ve and vs.

Then, we applied a supervised event detection algorithm
(i.e., parameterized peak- detector) on velocity signals ve,
vw, vs in S to extract significant events. The output of
this process consists in three time-series tsvw , tsve and tsvs
containing all the events occurrences coupled with the exact
time of the occurrence (e.g., ti is the time of the i-th event
that occurred in the time series). In such time-series an
“1” corresponds to event occurrence while a “0” means no
occurrences. Each time-series has the same number of N
items.

We computed ES on the following pairs of time-series:
(tsvw ,tsve), (tsve ,tsvs) and (tsvw ,tsvs). As an example, given
the following pair of time-series (tsvw ,tsve).

Let’s ti
x be the time of the i-th event in the time series

tsx. In our case event occurrences are: ti
vw , tj

ve with (i =
1, ...,mvw ; j = 1, ...,mve) where mx is the total number of
detected events in the time-series tsx.

The number of times an event appears in tsvw “shortly”
after it occurs in tsve and vice-versa are respectively com-
puted as:

cτ (tsvw |tsve) =

mvw∑
j=1

mve∑
i=1

Kτ
ji (1)

cτ (tsve |tsvw ) =

mve∑
i=1

mvw∑
j=1

Kτ
ij (2)

where τ represents the time lag allowed between two events
to be considered synchronized. We set-up a value of τ =
20frames (corresponding to 20 ms at 100 Hz) that in our

context is a reasonable time for abrupt changes in velocity of
movements to be perceived as synchronous by an observer.
Kτ
ij and Kτ

ji are computed as follows:

Kτ
ij =


1 if 0 < ti

vw − tjve < τ

1/2 if ti
vw = tj

ve

0 otherwise

(3)

Kτ
ji =


1 if 0 < tj

ve − tivw < τ

1/2 if tj
ve = ti

vw

0 otherwise

(4)

and the overall degree of synchronization Qτ in the time-
series is given by:

Qτ =
cτ (tsvw |tsve) + cτ (tsve |tsvw )

√
mvwmve

(5)

6. DATA ANALYSIS AND DISCUSSION
We computed average Qτ various (see equation 5) for

three pairs of joints: elbow-shoulder, elbow-wrist and wrist-
shoulder for 60 segments described in section 4. Detailed
results are presented in Table 1 and Figure 5.

A two-way MANOVA revealed a significant multivariate
main effect for Quality, Wilks’ λ = .540, F (6, 104) = 6.248,
p < .001, partial η2 = .265 (power to detect the effect .998),
and for Dancer, Wilks’ λ = .812, F (3, 52) = 4.011 , p < .05,
partial η2 = .188, (power to detect the effect .810). The
interaction effect between Quality and Dancer on the com-
bined dependent variables was not observed, F (6, 104) =
1.560, p = .166; Wilks’ λ = .842, partial η2 = .083. Given
the significance of the overall test for Quality, the univari-
ate main effects were examined. A significant univariate
main effect of Quality for elbow-shoulder pair was observed,
F (2, 54) = 8.325, p < .01, for elbow-wrist pair, F (2, 54) =
20.125, p < .001, and shoulder-wrist pair F (2, 54) = 7.229
, p < .01. Additionally a significant univariate effect of
Dancer for elbow-wrist pair was observed (F (2, 54) = 7.140,
p < .05) but not for the remaining two pairs (elbow-shoulder:
F (2, 54) = .995, p = .323 and shoulder-wrist: F (2, 54) =
.022, p = .882) The Levene’s statistics for the three depen-
dent variables are all non-significant.



Figure 5: The mean values of Qτ for three pairs of
joints.

For the elbow-shoulder pair (see Figure 6) post hoc com-
parisons using the LSD test with Bonferroni correction indi-
cated that the Fluidity synchronization indexes were signif-
icantly lower than Impulsivity ones (p < .01). Additionally
synchronization indexes of Rigidity were significantly lower
than Impulsivity ones (p < .05). There was no significant
difference between the synchronization indexes of Fluidity
and Rigidity (p = .328).

For the elbow-wrist pair (see Figure 6) post hoc compar-
isons using the LSD test with Bonferroni correction indi-
cated that the synchronization indexes of Fluidity were sig-
nificantly lower compared to Rigidity ones (p < .01), and
Impulsivity ones (p < .001). Additionally the synchroniza-

Figure 6: The mean values of Qτ for each quality.
The significant differences are marked with a *.

tion indexes of Rigidity scores were significantly lower than
Impulsivity ones (p < .01). For the shoulder-wrist pair (see
Figure 6) post hoc comparisons using the LSD test with
Bonferroni correction indicated that only the synchroniza-
tion indexes of Fluidity were significantly lower than Impul-
sivity ones (p < .01). There was no significant difference
neither between the synchronization indexes of Fluidity and
Rigidity (p = .108) nor between Rigidity and Impulsivity
(p = .320). Results indicates that it is possible to distin-
guish between movements performed with different qualities
by exploiting the arm’s joints velocity synchronization anal-
ysis. Figure 6) shows that impulsive movements are the most
synchronized, the fluid ones show the lowest values of syn-
chronization, and the rigid ones lay in between. Although
results show differences between the three qualities the dif-
ferences between dancers were also significant for one pair
of joints (elbow-wrist). The significant differences in syn-
chronization between all thee considered expressive qualities
occur in the most external joints of the body (elbow-wrist)
(see Figure 5). Less strong differences in synchronization
occur between pairs: elbow-shoulder and wrist-shoulder. It
might be due to the fact that not all the movements have
to include the shoulder motion. Indeed the average synchro-
nization indexes Qτ for two joint pairs that include shoulder
are lower compared to elbow-wrist correspondences.

7. CONCLUSION
In this paper we showed that intra-personal synchroniza-

tion might contribute to distinguish movements performed
with different expressive qualities, namely rigidity, fluidity,
and impulsivity. By applying the Event Synchronization al-
gorithm on the right arm joint’s velocity we found out that
different synchronization patterns characterize each consid-
ered quality. The next step will be an evaluation test con-
ducted on a larger dataset of segments related to more than
two dancers. Also, we will address a larger set of move-
ment features. We plan to completely automatize the event
detection step of our algorithm by taking into account the
characteristics of the input signal (e.g., for a slowly varying
signal a more “sensible” analysis will be needed in order to
detect peaks).

Techniques and models deriving from the work presented
in the paper can find a variety of applications in HCI. For
example, the possibility of detecting movement features like



fluidity and rigidity with non-invasive sensors will allow the
development of stress-aware visual interfaces, capable of adapt-
ing their behavior to different users with, for example, differ-
ent levels of expertise. More precisely, the possibility of rec-
ognizing and measuring such movement qualities, can lead
to a significant improvement of future human-computer in-
terfaces: they will have to be efficient, enjoyable (i.e., user-
friendly) and able to capture information about the user’s in-
ternal state (e.g., mood). During the interaction, interfaces
will “tune” their behavior according to both user’s needs and
multimodal feedback.

Acknowledgements
This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 645553 (DANCE)2. DANCE investigates how
affective and relational qualities of body movement can be
expressed, represented, and analyzed by the auditory chan-
nel.

We thank our collegues at Casa Paganini - InfoMus Cor-
rado Canepa, Paolo Coletta, Nicola Ferrari, Simone Ghisio,
Ksenia Kolykhalova, and Roberto Sagoleo for fruitful discus-
sions and for their invaluable contributes in the design of the
multimodal recordings, and the dancers Roberta Messa and
Federica Loredan for their kind availability to participate to
the recordings of our movement qualities repository.

8. REFERENCES
[1] D. Bernhardt and P. Robinson. Detecting emotions

from everyday body movements. Presenccia PhD
Sym., Barcelona, 2007.
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