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Abstract—Decoding the intensity of facial expressions is of
primary importance for humans. Modeling this computationally,
however, is not an easy task. Here, we propose a new dataset
composed of circa 400 videos and 1,000 images automatically
extracted from several movies, and rated by humans on intensity.
Each stimulus presents facial expressions of one person only, but
overall, the stimuli represent a large variety of expressions in
individuals of different age, gender, and ethnicity, in fictional yet
natural movie settings. Each video was rated by 5 people in terms
of perceived intensity and variability using a 7-point Likert scale;
each image was rated by 5 people only for intensity. In total, 90
people participated in the ratings, and the average inter-rater
ICC agreement is 0.63 for videos and 0.66 for images. For each
video and image we also extracted intensity values on 15 action
units using the OpenFace software.

We report results for both human and computer-assisted
intensity ratings, and propose a baseline regression model capable
of estimating the perceived intensity in images and videos with
a mean squared error of 0.74. We conclude our paper by
discussing potential applications of a general computational
model of perceived intensity.

Index Terms—facial expressions, dataset, intensity, perceptive
study, regression

I. INTRODUCTION

The intensity of human facial expression is an important cue
that humans use to understand others and thus predict their
behavior. Several attempts to computationally model intensity
have been proposed [11], [17], [37], [40], [43]. Most of these
approaches focus on identifying different phases within one
facial expression (such as the apex or onset) and analyzing
the temporal profile of intensity changes. These computational
approaches are often fine-grained, focusing on single moments
(e.g., single image frames) of an expression, the activation
of specific action units (AUs), or basic expressions. While
they are certainly appropriate when working with the precisely
measured activation of certain facial muscles (e.g., through
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motion capture technology, facial landmarks, or EMG), they
might not be optimal for modeling the perception of dynamic
human facial expressions. In daily life, humans evaluate facial
expressions in a holistic manner (e.g., ”expression X is very
intense”) or compare two expressions (e.g., ”expression X is
stronger than Y ”). We thus propose a more holistic approach
to modeling perceived facial intensity, defined as the global
(or overall) intensity attributed by (naive) observers to a facial
expression. A facial expression, for the purpose of this work,
is defined as any visible movement or positioning of the facial
muscles that conveys information, including emotions, social
attitudes, intentions, cognitive processes, communication feed-
back, cultural signals, and personality traits.

Our approach consists of providing one global descriptor to
the whole expression without considering expression phases.
With this approach, we address both theoretical and practical
questions: First, how is perceived intensity related to the phys-
ical (i.e., measurable) activity of single facial features (e.g.,
AUs) or their combinations (RQ1)? Second, is it possible to
build a general computational model to estimate the perceived
intensity of any expression (RQ2)?

The lack of suitable datasets presents the first challenge
in addressing these questions. In existing datasets, intensity
is typically considered locally and within a specific context
[1], [31]. As a result, facial expression variability is rather
low. Additionally, the existing works largely ignore the fact
that facial intensity can be considered in contexts other than
emotion displays, such as expressions of dominance [6] or
politeness [5]. Consequently, in this paper, we propose a
novel dataset dedicated to intensity of facial expressions: the
Perceived Intensity of Facial Expressions (PIFE) dataset. THE
PIFE consists 409 short (ranging from 3 to 5 seconds) video
segments and 998 images, extracted from several movies. Each
video and image was rated by humans for intensity of the
facial expression on a scale of 1 to 7. Additionally, for all
segments, we extracted information about the action units
activation using freely available software.

In relation to our research questions, previous studies have



analyzed whether perceived intensity varies linearly with the
physical activation of facial features [16], [29]. However, these
studies are limited to expressions of emotions, and their results
are contrasting (see Section II-A). Additionally, if such a
linear relation existed, then designing computational models
for facial intensity recognition should be relatively straightfor-
ward. However, existing studies on this topic, especially recent
works using complex deep learning architectures, suggest that
the relationship between perceived intensity and measurable
physical activation of facial features is likely to be more
complex.

The present work contributes to the literature on automated
assessment of facial expression, using a large variety of facial
expressions collected from a broad spectrum of individuals,
which are not manipulated (e.g., by morphing methods).

II. RELATED WORKS

A. Perceived intensity and Physical Features of Facial Expres-
sions

The relationship between the physical (or measurable) fea-
tures and perceived intensity of facial expressions was assessed
by Hess et al. [16] for expressions of anger, disgust, sadness,
and happiness using a set of pre-selected manipulated images.
The results revealed that perceived intensity varied linearly
with the intensity of the expression. Importantly, in that
study, the stimuli were artificially modified using a morphing
technique, which does not ensure that the stimuli correspond
to real expressions. Indeed, Becker et al. [4] highlighted issues
with stimuli generated using such techniques. They found that
real video recordings were perceived to have greater emotional
intensity than corresponding dynamic morphs.

In another study, 250 spontaneous laughter video segments
(and corresponding facial MoCap data) recorded in natural
settings were rated in terms of intensity using a 5-point Likert
scale [25], [29]. The results indicated that perceived intensity
was strongly correlated only with the measured (using MoCap)
intensity of AU25/AU26, but not with other analyzed action
units (i.e., AU6, AU12, AU4).

B. Relevant datasets

A detailed overview of the datasets for studying intensity
was recently proposed by Mehta et al. [22]. One of the most
frequently used datasets is the Cohn-Kanade (CK+) dataset
[19], which contains both images and videos of seven basic
emotions and action units (AUs). It has often been used
to develop intensity models, e.g., [9], [17], [34], [43]. The
BU-3DFE database [41] contains videos of basic emotions
performed by 101 participants. Each expression starts and
stops on a neutral face, allowing for easy comparison between
several frames of the same expression. The expressions are
annotated with four intensity levels. The BP4D [42] contains
spontaneous displays of eight affective states elicited in lab
conditions and includes FACS annotations with intensity levels
(for certain AUs only). It was used for the Facial Expression
Recognition and Analysis Challenge (FERA 2015) [39] and
in many research papers (e.g., [40]). The MMI dataset [31]

consists of images and videos of 19 subjects performing
posed and spontaneous expressions of basic emotions and
specific AUs. The faces in the videos start neutral, change
to expression apex, and then return to neutral. The analysis of
AU temporal activation patterns (onset, apex, offset) is also
provided. MMI was used in several works, e.g., [2], [34].
Similarly, the MUG dataset consists of image sequences of
posed and induced basic facial expressions, used in studies
such as [34]. In [21], 27 young adults were video-recorded by
a stereo camera while they watched online video clips intended
to elicit spontaneous emotional expressions. Each video frame
was manually coded for the presence, absence, and intensity
of facial action units using ordinal scores ranging from 0 (not
present) to 5 (maximum intensity). This dataset was used,
among others, in [40]. Differently, Dhall et al. [11] focus on
group happiness intensity. They propose the HAPPEI database,
composed of images posted online and labeled with group-
level mood intensity from ‘neutral’ to ‘thrilled’. Additionally,
8,500 single faces from this set were annotated in terms
of happiness intensity, occlusions, and poses. A study was
conducted to identify which factors influence how people
perceive the group’s happiness (e.g., the number of people,
the distance between them, occlusions).

C. Modeling Intensity of Facial Expressions

One of the early approaches for intensity estimation was
proposed by Delannoy and McDonald [10], who considered
it a multi-class classification problem and employed one-
against-all Support Vector Machines with three degrees of
intensity: low, medium, and high. Chang et al. [9] introduced
a framework that combines low-level image features with
ordinal regression to estimate expression intensity of single
images. Similar to Delannoy and McDonald’s paper [10], three
levels of intensity are also considered in [9], but this approach
takes into account the relative order between the images.

Zhao et al. [43] also applied ordinal regression to esti-
mate frame-level expression intensity by exploiting intensity
labels given by human raters to selected frames. Features are
extracted from facial landmark points, local binary patterns,
and Gabor wavelet coefficients. In addition to the standard
databases containing expressions of basic emotions, the model
was also tested on the UNBC-McMaster shoulder pain dataset
[20].

Kamarol et al. [17] present a framework for facial expres-
sion recognition and intensity estimation using a combination
of kNN, weighted voting, and Hidden Markov Models. The
algorithm classifies a sequence of features (corresponding to a
video) into an expression class and quantifies the intensity of
the sequence as the expression changes from neutral to apex.
It was tested on a standard dataset of basic emotions [19].
Recently, more complex deep learning architectures for AU
intensity estimation have been proposed. For example, Walecki
et al. [40] explored Convolutional Neural Networks.

Beyond machine learning methods, Uddin and Canavan
[37], [38] propose a set of mathematical formulas for quan-
tifying spatial and temporal expressiveness based on action
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units data, landmarks, head pose, and gaze. For instance, in
[37] they computed a bounded score at the video frame level,
giving more importance to action units with high intensities
and large temporal changes.

III. PIFE DATASET

The PIFE comprises of video segments and images from
movies. Movies are often used to build datasets for affective
computing, both as stimuli to elicit affective reactions [23],
[24], as well as sources of nonverbal behavior data, e.g.,
for emotion classification [12]. They are an easily accessible
resource providing a wide variety of expressions related to
emotions and other internal states, expressed by a large num-
ber of individuals. While there may be differences between
spontaneous and fake (or ”acted”) expressions [14], for our
present purposes this is not a major concern. Another reason
for using movies is that the montage techniques employed in
movie production lead to scene segmentation, where actors’
meaningful facial activity is shown in a single shot. Especially
in fiction movies, there are not many casual or unrelated
expressions.

Using movies allows us to capture a variety of facial
expressions that are representative of real life. This contrasts
with typical data collections in laboratory settings (e.g., [1],
[19], [31]), which are limited to a small number of emotions.
The work most similar to ours is by Dhall et al. [12], which
introduces the AFEW (video) and SFEW (image) datasets
of affective displays derived from over 50 movies using a
semi-automatic recommender system and analyzing movie
subtitles. The data was annotated in terms of (basic) emotions,
and characteristics of the actors such as gender, age. To the
best of the authors’ knowledge, AFEW and SFEW were not
evaluated in terms of perceived intensity. We believe that
the characteristics discussed above make our dataset suitable
for studying the perception of intensity of facial expressions
and for developing computational models to estimate facial
intensity.

Twelve movies with an average resolution of 736 × 363
and a mean duration of 116 minutes were used to extract the
stimuli presented to human raters (minimum height and width:
640 × 308, maximum height and width: 858 × 464, minimum
duration: 94 minutes, maximum duration: 152 minutes). The
movies were processed using OpenFace 2.0 [3], a widely used
tool in the research community (recent examples include [13],

[15], [18], [27]) to extract information about facial activity and
to divide movies into video segments.

A. Choice of video segments

The movie segments, where a human face is detected by
OpenFace, were automatically extracted by comparing the dis-
tances between detected faces in consecutive frames following
to the procedure described in [36]. Only the frames that were
successfully (i.e., the value of success given by OpenFace is
1) analyzed by OpenFace were taken into consideration. The
initial pool contained segments with multiple faces, where
certain segments Ai and Aj may overlap, if face Fa is tracked
in Ai and face Fb is tracked in Aj simultaneously. Next, the
following selection criteria were applied to the initial pool:

• Duration: Segments lasting a minimum of 3 and a max-
imum of 5 seconds were retained. This was done to
ensure a minimum of information for effective rating by
humans, while at the same time limit the duration so
that a segment does not contain multiple expressions and
multiple sources of variability.

• Face display: Segments featuring more than one face
were excluded to simplify the ranking task and mitigate
ambiguity.

• Dimension: To ensure clear visibility for human raters,
segments where a human face covers less than 20% of
the frame were ruled out.

The script written in Python was used to select automatically
the segments that meet the above mentioned criteria resulting
in 434 segments. From this pool, we removed manually seg-
ments containing unrealistic deformations created with special
effect techniques and masked faces, as well as the segments
that were erroneously extracted. The latter occurs when two
different faces appear in exactly the same position in two
consecutive frames due to movie montage. The final dataset
consists of 409 video segments.

Each video was edited to start and finish with a white frame.
The audio was removed from all the videos. It should also be
noted that some of the segments contain the actors speaking.
This is an intentional decision, as facial activity during speech
(e.g., lip movement) can influence the perception of intensity
(e.g., strong visible articulation). Thus, in our view, these
movements contribute to their perceived intensity.



B. Choice of images

Nearly a thousand single frames were extracted from the
same set of movies, ensuring that the same number of images
was taken from each movie. Each image depicts just one
person’s face. The images were selected randomly, but our
intention was to balance the number of potentially high- and
low-intensity expressions in the set. For this purpose, we
employed very simple heuristics to estimate the facial inten-
sity. Specifically, we computed, for each image, the average
intensity of action units (AUs) using the AU intensity values
extracted with OpenFace. Subsequently, we divided the images
into four intensity quartiles and randomly selected the same
number of images from each quartile. It’s important to note
that while this approach may not accurately simulate human
perception, it provides a simple way to ensure that stimuli
exhibit a certain variety in terms of facial intensity. Similarly
to what we did for the videos, for images we also excluded
manually some frames with highly deformed faces. After
removing these images, we repeated the selection procedure
to balance the number of stimuli per movie. A total of 998
images were retained.

IV. RATING STUDY

409 videos and 998 images were rated in the online study
organized on the Qualtrics platform. Each stimulus was fol-
lowed by three questions for the video part and two questions
for the image part. First, the participants rated the perceived
intensity and variability of the facial expressions using two
Likert scales from ”very low” to ”very high.”

The second variable was added because we anticipate that
this information may be useful for developing computational
models in the future (see Figures 2 and 3). Finally, participants
were also asked to specify the gender of the portrayed person.
Their answers to the third question were not used for any data
analysis; it was included to motivate participants to watch the
stimuli attentively.

Videos were divided into 8 and images into 10 nearly
equally sized sets. Each person was asked to rate only one out
of 18 sets. Thus, each participant was assigned either videos
or images but not both. This division was primarily made to
ensure the task could be completed within a reasonable amount
of time, typically around 20 minutes in practice. The stimuli
within each set were presented in random order, and the sets
were randomly assigned to the raters. Raters were allowed to
replay a video segment multiple times before answering the
questions. Once the rater submitted their answers, they were
not allowed to change them. The stimuli were presented one
per page in a standard web browser.

After expressing interest, participants were forwarded to the
Qualtrics page. Before starting the task, they participated in a
short online training phase. During that phase, they were given
the following definition of intensity:

We refer to the strength or clarity with which signals are
conveyed through facial movements. ”Intense” in this context

refers to the strength, vividness, or prominence of the
expressions displayed on individuals’ faces.

The variability was explained as follows:

We refer to the diversity or range of facial expressions
observed in the given video. In this context ”variable”
implies the degree of differences or variations in facial

expressions displayed by individuals in the video.

They were also asked to test the interface, rate the a sample
of stimuli and answer a sample of attention questions.

To detect careless responding we included four attention
questions per questionnaire. In the video survey, participants
were presented with a white number against a black backdrop
and were required to adjust both sliders to match this number.
In the image survey, the attention questions featured images
with more than one face, and participants had to select using
a slider a number corresponding to the number of seen faces.

No identifying information was collected to ensure
anonymity and participants were instructed that they could
interrupt the task whenever they wanted without consequences.

After rating all the stimuli in the pool, participants were
asked to provide basic demographic data and indicate how
many movies and actors they recognized. To answer these two
questions, they had to choose one out of five labels ranging
from I do not recognize any to All of them.

V. RESULTS

In the video rating study, 44 human annotators participated;
39 volunteers and 15 recruited via Prolific (an online platform
for running surveys) and paid £5. Four participants were
excluded due to failing more than one attention question. In the
image rating study, 52 raters participated (25 were recruited
via Prolific and paid £5) - two participants were excluded due
to failing more than one attention question.

Figure 1 shows the distribution of video intensity and vari-
ability ratings, and of images intensity ratings. Both intensity
ratings are fairly normally distributed, while variability ratings
(of videos) shows a skewed distribution, suggesting that the
video set contains just a few videos that display high variability
in facial expressions. This is partially due to the fact that
the upper limit for duration was defined as 5 seconds - thus
limiting variability.

To check the inter-rater agreement, we used the inter-class
correlation ICC2k implemented in Python [32]. We applied it
separately to each stimuli group (8 video groups and 10 image
groups), as all stimuli within one group were rated by the same
5 raters. For the images, the ICC values range from 0.373 to
0.866, with an average of 0.664. For videos, the ICC range
for intensity is from 0.464 to 0.757, with an average of 0.63,
and the ICC range for variability is from 0.555 to 0.813, with
an average of 0.7. We conclude that the inter-rater agreement
for videos’ variability is good, while the agreements for video
and image intensity are slightly lower but still acceptable.

Regarding the post-rating questionnaire, Table I presents the
raters’ answers. It can be seen that most of the participants



TABLE I
THE RESPONSES TO THE POST-RATING QUESTIONS CONCERNING

FAMILIARITY WITH MOVIES AND ACTORS.

Label
Videos Images

movies actors movies actors

I did not recognise any 0.049 0 0.034 0.034

A few 0.463 0.244 0.448 0.310

Several 0.293 0.195 0.328 0.362

Many 0.170 0.512 0.172 0.293

All of them 0.024 0.049 0.017 0

recognize some movies and many (but not all) actors. At the
current stage of this research, we do not utilize this information
further in this paper.

The dataset consists of video clips with 167 female and
241 male faces, with a slightly skewed distribution favoring
males. The inter-rater reliability, measured by Fleiss’ Kappa,
averages at 0.9505, indicating high agreement, with 12 videos
where only one participant answered ’I cannot tell’. While this
question was used to encourage the raters to watch the stimuli
and we did not aim to make any conclusions the ”correctness”
of their answers, we note that high agreement likely indicates
that the raters did indeed view the segments, suggesting that
the rating procedure was successful.

VI. DATA ANALYSIS

To address RQ1, the action units’ intensities were extracted
from all the video segments and images using OpenFace. For
the videos, the extracted AU intensities were subsequently
filtered using the Savitzky–Golay filter (see Figures 2-3).

A. Temporal Profiles of AU-Computed vs. Perceived Intensity

The first stage is to compare time series for certain segments
that are similar in terms of perceived intensity. Figure 2a
presents the maximum and average intensity detected by
OpenFace for all action units in four segments rated by humans
as highly intense and highly variable, while Figure 2b presents
the same plots for four segments rated as highly intense but
with low variability. In Figure 2b, it can be seen that the
activation of action units is more or less constant throughout
the entire segment. However, the plots in Figure 2a show
variation in facial activity within segments. This observation
is consistent with the reported variability values.

Next, we analyze intensity scoring separately for the three
subsets corresponding to eyebrow activity (AU1, AU2, and
AU4), middle face activity (AU5, AU6, AU7, and AU9), and
mouth area activity (see Figures 3a and 3b). It can be seen
that the mouth area often displays much more variability than
the other two, which is probably caused by the fact that the
person in the video is speaking.

B. Regression

To demonstrate the feasibility of modeling perceived in-
tensity using the PIFE dataset (addressing Research Question

2), we conducted a series of experiments utilizing standard
regression techniques, including Support Vector Regression
(SVR), Random Forests (RF), Ridge Regression (RR), and
Multilayer Perceptron (MLP). At this stage of the research,
our objective is not to find the optimal solution, but rather to
propose a baseline model.

We trained a set of regressors for images and videos
separately. For images, we used the 15 AU intensity values
extracted by OpenFace and the average ratings of perceived
intensity. For the videos, the same information was extracted
from each frame of a segment, and then the intensity val-
ues were aggregated by computing the 1) average and 2)
maximum. We applied the StandardScaler [35] to the feature
vector to match it with the 1-7 interval used in the ranking
study. We compared the results with simple methods that
compute the average and maximum intensity of all action
units for each frame, and then aggregate them using the
maximum and average, giving four additional methods in total
(for images, we just compute average and maximum without
applying aggregation). Optuna [30], an open-source hyperpa-
rameter optimization framework, was used to find the optimal
parameters. For MLP, the best parameters were chosen by con-
sidering the following: activation ∈ [tanh, relu], solver ∈
[sgd, adam], α ∈ [1e − 5, 1e − 1], learning rate init ∈
[1e − 5, 1e − 1], n units l ∈ [10, 500], n layers ∈ [1, 10].
For SVR, the best parameters were chosen by considering
the following: C ∈ [1e − 3, 1e3], ϵ ∈ [1e − 4, 1e − 1], γ ∈
[scale, auto], kernel ∈ [linear, poly, rbf, sigmoid].

Five-fold cross-validation was applied to each model, and
average results in terms of mean square error (MSE) and mean
absolute error (MAE) are reported in Table II (intensity scores
are in the range 1-7). The best results were obtained with
SVR using a linear kernel and C = 0.009, ϵ = 0.74 (videos)
and C = 0.003, ϵ = 0.004 (images). However, in general,
differences between different regression methods are small.

C. Discussion

The results show that simple averaging or taking the max-
imum of AUs is not sufficient to estimate the perceived
intensity (see Table II, rows 11-14). This can also be seen
in Figure 4b, where the correlations between the average and
maximum of AUs and perceived intensity in the case of images
are low (0.16 and 0.24, p < 0.01). All other approaches that
result in more complex models using AUs data, rather than
simple arithmetic operations, show much better results.

In relation to RQ1, these results indicate that the perceived
intensity of facial expression is a complex phenomenon to
model and cannot be accurately expressed using the maximum
or average of measurable local facial activity. At the same
time, the differences between various models are very small
(see Table II, rows 1-10). In particular, standard linear regres-
sion (see Table II, rows 5 and 10) obtains similar results in
terms of MSE and MAE compared to more advanced methods.
Additionally, Figure 4a shows that the best model produces
relatively small errors for low and middle-range intensities
but larger errors for extreme values of perceived intensity.
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TABLE II
REGRESSION RESULTS FOR VIDEOS AND IMAGES. ”AGG” DENOTES THE

AGGREGATION METHOD USED FOR VIDEOS, AS THEY CONSIST OF
SEQUENCES OF FRAMES.

Method
Videos Images

Agg MSE MAE MSE MAE

avg avg 9.224 2.899 9.017 2.833

max max 1.637 1.050 3.034 1.462

max avg 6.234 2.323 - -

avg max 3.540 1.645 - -

RR max 0.774 0.709 0.823 0.753

RF max 0.788 0.714 0.785 0.728

MLP max 0.779 0.709 0.854 0.743

Linear max 0.786 0.710 0.849 0.747

SVR max 0.766 0.702 0.784 0.733

RR avg 0.756 0.703 - -

RF avg 0.786 0.719 - -

MLP avg 0.756 0.698 - -

Linear avg 0.770 0.702 - -

SVR avg 0.744 0.694 - -

On the other hand, there are many more middle-range cases
in the current dataset, while segments of extremely low or
extremely high intensity are few (see Figure 1). Consequently,
the question of whether the perceived intensity is a linear
combination of measured AUs intensities remains open. Our
belief is that more advanced models are needed that take into
account the temporal evolution of the single AUs intensity to
improve the results. Applying such models requires more data.

Considering the simplicity of the regression methods used,
the results presented in Table II can be considered only as a
baseline computational model (RQ2). The MSE error obtained
for the best model is comparable to the error reported in
previous works, e.g. [43], which used a similar 7-point scale
for intensity but a different dataset.
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VII. APPLICATIONS

A computational model of perceived facial intensity may
have several applications across a wide spectrum of topics,
ranging from Human-Computer Interaction and entertainment
(e.g., video games and Virtual Reality systems with affective
feedback) to medicine (e.g., pain estimation). Here, we will



focus on two different examples in more detail.
First, we believe that such models of perceived intensity

can contribute to more effective Human-Robot Interaction.
Existing models are usually restricted to a small number of
emotional labels (e.g., Ekmanian) or action units, and they
may not perform accurately when applied to the wide range
of facial displays occurring in real-life interaction. Interactions
with social robots may involve many unexpected events that
elicit a variety of emotional (and other internal) states in
humans [26], [33], which go well beyond basic emotions.
Thus, robots need to perceive the intensity of all expressions,
regardless of whether these expressions are basic emotions
or not. Moreover, to be able to react appropriately, social
robots (and other artificial companions) would need to analyze
the intensity at a global level rather than at the frame level,
resulting in one ”global intensity score.” In these applications,
modeling the global perception of intensity is crucial.

Second interesting application of such a model can be the
study of expressiveness across various movie genres. Recently,
several works have exploited computational approaches to
analyze and compare various literary genres [7], [8]. However,
the lack of appropriate computational tools to process human
nonverbal behavior has prevented similar comparative analyses
for visual content, such as movies. In this context, it is
particularly important to have tools that model the perception
of facial expressions intensity.

VIII. CONCLUSION AND FUTURE WORK

The main contribution of this work is the creation and
validation of a new dataset called the Perceived Intensity of
Facial Expressions Dataset. The PIFE comprises of videos
and images depicting a large variety of facial expressions of
several individuals in various natural settings and contexts
(such as indoor and outdoor, artificial and natural lighting,
partial shadows and occlusions, different face dimensions and
face angles, and co-occurring activities such as speaking). All
stimuli in the PIFE were evaluated in terms of intensity (videos
and images) and variability (videos only) by 90 raters, with
each stimulus rated five times. The dataset is designed for
studying and modeling facial expression intensity.

Compared with existing datasets (see Section II-B), the
following characteristics stand out:

• A large variety of expressions that go beyond basic facial
displays of emotions, including non-affective expressions
in various contexts;

• Holistic rankings of the perceived intensity by non-expert
observers (i.e., no FACS experts);

• Rankings of the variability of facial activity in segments.

The data of facial landmarks, AU intensity values, and ratings
of intensity and variability are available for research purposes
1. Moreover, we provide baseline models for perceived inten-
sity using the AU intensities extracted by OpenFace. While the

1https://github.com/estiei/PIFE-Perceived-Intensity-of-Facial-Expression-
Dataset

obtained results are promising, there is room for improvement,
and we offer some suggestions below.

Some limitations of this study should be mentioned. First,
the quality of the models depends on the quality of the
extracted data. It would be beneficial to repeat the experiments
reported in Section VI using data extracted with tools other
than OpenFace. Moreover, the final model should also be
tested on other datasets. Second, we did not pose any restric-
tions on the participants other than age. It is not clear, however,
whether some cultural and social factors may influence the
perception of intensity. Future studies should address these
issues. In this line, we added two questions in the questionnaire
to check whether familiarity might have an impact on reports;
however, the corresponding data (see Table I) were collected
but not analyzed yet.

Future work will focus on designing better general com-
putational models of facial intensity. Firstly, temporal profiles
of AU intensities should be addressed in the future. Utilizing
more advanced machine learning methods that take into ac-
count temporal information may require extending the dataset.
To address this shortcoming, we are going to extract additional
segments from another set of 12 movies. In our approach, seg-
mentation is performed automatically, while collecting more
ratings can be achieved using crowdsourcing, which proved to
be quite successful in this study with only a small number of
rejected raters. Secondly, the additional information on facial
expressions collected in this study, that is, variability and its
relation to perceived intensity, is worth deeper exploration in
the future. Future research should also focus on the perceived
intensity in multimodal expressions (e.g., facial expressions,
body movements, and voice). Preliminary work in this di-
rection was proposed recently by Niewiadomski et al. [28],
but it is restricted only to the expressions of laughter. Last
but not least, while the inter-rater agreements obtained in this
work are generally satisfactory, stronger discrepancies were
observed for some stimuli. It would be interesting to study in
the future whether stimuli for which discrepancy is particularly
high share some common characteristics.

ETHICAL IMPACT STATEMENT

This work aims to answer a theoretical question regarding
the perception of intensity and modeling the intensity per-
ception. The stimuli used in this study come from available
materials (movies), which are copyrighted and present pub-
licly known persons (actors) performing intentionally some
activities with the knowledge of being recorded and that these
recordings (movies) will be available to a large audience.
While facial information is revealed from images and videos,
we neither use identity-specific information nor base our
claims on a specific religion, race, or gender of the displayer.
The video segments show actors of various ethnicities, age
groups, and genders.

The raters performing the rating task are anonymous, and it
is impossible to identify individual raters or judge them based
on their given answers. The raters were informed before start-
ing the task that they could withdraw at any moment without



any consequences. Some of the raters received compensation
corresponding to the time dedicated to the task.

According to the authors, at the current stage, this research
does not bring any negative impact or consequences. However,
it can contribute to the development of models that may po-
tentially be misused in the future, similarly to any other model
for analyzing human facial expressions. The proposed solution
is non-obtrusive and reuses existing videos and online tools to
collect the ratings. Several potential benefits are expected from
the applications of this study, which are discussed in the paper.
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