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Abstract—When developing interactive systems for children,
such as serious games in the context of educational technology, it
is important to take into account and address relevant cognitive
and emotional child's experiences that may influence learning
outcomes. Some works were done to analyze and automatically
recognize these cognitive and affective states from nonverbal
expressive behaviors. However, there is a lack of knowledge
about visually impaired children and their body language to
convey those states during learning tasks. In this paper, we
present an analysis of nonverbal expressive behaviors of both
blind and low-vision children, aiming at understanding what
type of body communication can be an indicator of two cognitive
states: engagement and confidence. In the study we consider the
data collected along the EU-ICT H2020 weDRAW Project, while
children were asked to solve mathematical tasks with their body.
For such a dataset, we propose a list of 31 nonverbal behaviors,
annotated both by rehabilitators used to work with visually
impaired children and by naive observers. In the last part of the
paper, we propose a preliminary study on automatic recognition
of engagement and confidence states from 2D positional data.
The classification results are up to 0.71 (F-score) on a three-class
classification task.

Index Terms—visually impaired children, engagement, con-
fidence, learning, cognition, nonverbal behaviors, classification,
machine learning

I. INTRODUCTION

Nonverbal communication is the first stage of communi-
cation development [41], representing a fundamental part of
what people use to convey information when they interact and
communicate with each other [23]. Since the visual modality
is crucial for developing social and communication abilities,
visually impaired children may show nonverbal behaviors
different from children without visual impairment [46]. In

The weDRAW Project has received funding from the European Union’s
Horizon 2020 Research and Innovation Program under Grant Agreement
No.732391.

978-1-7281-3891-6/19/$31.00 ©2019 IEEE

Radoslaw Niewiadomski
Istituto Italiano di Tecnologia
radoslaw.niewiadomski @iit.it
Monica Gori
Istituto Italiano di Tecnologia

Genoa, Italy
monica.gori @iit.it

Temitayo Olugbade Carla Gilio

UCLIC
University College of London  Istituto Chiossone
London, UK Genoa, Italy

temitayo.olugbade.13@ucl.ac.uk gilio@chiossone.it

Gualtiero Volpe
Casa Paganini - InfoMus, DIBRIS
University of Genoa
Genoa, Italy
gualtiero.volpe @unige.it

U-vip

this paper, we focus on nonverbal indicators of cognitive
states in blind children and children with visual impairment
in mathematical task-oriented settings. The work is carried-
out within the EU-H2020-ICT weDRAW Project that aimed
at developing adaptive multisensory technologies to enhance
understanding of mathematical concepts in primary school
children. According to the project objectives, a personalized
technology design can meet the needs of both typically devel-
oped and visual- or learning- impaired (e.g., blind, or dyslexic)
children. In this framework, a set of serious games has been
developed to teach children the basic concepts of mathematics.
Such games would benefit from an adaptive feedback based on
a child’s specific learning needs and her/his involvement in the
task, e.g., by means of an automatic measurement of her/his
cognitive engagement and confidence. Whilst several works
exist on the recognition of cognitive states (e.g., see [27], [36]
for engagement) they do not focus on nonverbal behaviors
of visually impaired users. In Sections II, III, IV, and V,
starting from the state-of-the-art on nonverbal communication
in visually impaired children and from the weDRAW dataset,
we describe relevant nonverbal cues of engagement and con-
fidence for this population. We then introduce the annotation
procedure we adopted in this study in Section VI, and we
present our preliminary work on automatic classification of
these states from video in Section VIIL

II. BACKGROUND: GESTURES AND UNCONSTRAINED
BODY MOVEMENT IN VISUALLY IMPAIRED CHILDREN

The level of visual functioning can greatly influence early
child development. A visual disability may therefore lead to
developmental delays, especially if an early intervention does
not take place [49]. Developmental delays can have a negative
effect on child’s participation both in rehabilitation and educa-



Fig. 1: Picture of a blind child exploring angles with his arms
during the weDRAW data collection

tional settings. In addition, poorer immediate problem-solving
[13] and mathematical skills [30] have been found in children
with a visual impairment.

Nonverbal behaviors in visually impaired children were
expected to be semantically different from those of typically
developing ones. For this reason, considering the state-of-the-
art, it is relevant to investigate the extent to which visual
impairment may affect the development of nonverbal com-
munication patterns and the ability to produce such patterns
in various social interactions. For instance, head orientation,
proxemics, and distance from objects (e.g., walls) might have
different meaning [46] when displayed by visually impaired
individuals. Iverson and Golden-Meadow [26], for example,
discussed gestures used by congenitally blind children who
never saw gestures before nor experienced their communica-
tive functions. Results showed that visually impaired chil-
dren produced gestures, but not in all situations as it was
for sighted and blindfolded ones. The study suggested that
gestures provide speaker with functions that are independent
by the listeners.

1II. ENGAGEMENT AND CONFIDENCE BEHAVIORS
IN CHILDREN

Important developmental and social changes occur in chil-
dren starting from the age of 6. Through these years, they
contribute to create a personal identity, a self-concept, and
an orientation toward achievements that will be relevant for
shaping their success in school, work, and life. In this work, we
investigate confidence and engagement in primary school chil-
dren with visual impairments during embodied mathematical
tasks solving. The educational literature shows (see [38] for a
review) that in interactive learning task-oriented environments,
it is crucial to be able to recognize these two cognitive states
in order to avoid the potentially negative outcomes of learning
experience. Lack of engagement, or low self-confidence might
lead to negative emotions such as boredom or anxiety [9] and
even to the complete abandonment of the task. Below, we
provide the definitions of the two states as they were given to
the annotators:

Engagement can be considered a cognitive construct, based
on the interrelation between behavior, cognition and emotion.
In young children, it can be deduced from a child’s interaction,
other peers and materials in a way that is appropriate from
a developmental and contextual point of view [31], [48]. In
learning studies, engagement is often defined as the amount
of energy that the student devotes to learning experience. In
literature, research highlighted three different types of stu-
dents engagement: cognitive, emotional, and behavioral [18].
Cognitive engagement is related to how much students invest
cognitive efforts and resources in learning; the emotional
one consider motivation and commitment; instead behavioral
engagement deals with students on-task behaviors. [35].

On the other hand, confidence results from the appreciation
of one’s own abilities or qualities. Scientific literature [14],
[40] has corroborated Erikson’s idea [15] that feelings of
competence and personal esteem are of central importance to
a child’s well-being [25]. For example, children who do not
consider themselves competent in academic, social, or other
fields (such as athletics, music, theatre or scouting) during their
elementary school years report depression and social isolation
more often than their peers [12]. Self-confidence is closely
related to the task for which the solution is being sought and
can also be observed in short intervals of time.

Cognitive engagement has a great impact on learning out-
comes and this is why it is such considered also in e-learning
technology research [16]. Analogously, self-confidence is one
of the states that teachers use to monitor children learning
outcomes [20].

IV. AUTOMATIC RECOGNITION OF ENGAGEMENT
AND CONFIDENCE

Several works were proposed in the literature to compu-
tationally address the level of engagement from nonverbal
behaviors [29]. Most of them focused on engagement detection
or estimation in human-human [17], human-virtual agent [33],
or human-robot [3] dyadic or group interactions from gaze
[33], back-channels [43], and facial expressions [21]. Frank
and colleagues [17] proposed the Engagement Classification
Framework composed of six states from “disengagement” to
“involved action”. Their framework implementation detects
three levels of engagement from 3D data by detecting a
set of features of the upper body movements such as hand
vertical positions and speed, leaning and body direction as
well as specific postures. In [28], a multimodal approach
was proposed to detect levels of engagement, using nonverbal
features extracted from audio and visual data, and using rank
learning. Finally, recent works included the application of
deep learning techniques to compute intensity of engagement
from video in e-learning tasks (see, e.g., papers included in
the “Engagement in the Wild track” of the EmotiW 2018
Challenge at the ICMI conference).

In the context of single-user activity, Ge and colleagues [19]
proposed a model for engagement/disengagement detection in

Thttps://sites.google.com/view/emotiw2018



autistic children from body movements. They detected each
child’s concentration on a given task (e.g., playing a game
on a tablet) by extracting a set of features from kinematics
data obtained from an RGB-D camera and applying machine
learning techniques. Several features were computed using
angles and distances between child’s joints and an object of
interest (e.g., a table). Using standard algorithms such as SVM,
Random Forest, and AdaBoost, they achieved a recognition
rate up to 97% for a two-class pattern recognition problem.
Shaker and Shaker [45] detected the level of engagement from
nonverbal cues in a context of single-user video game. They
extracted several low-level visual features, and combined them
with high-level facial expressions labels. Next, they applied
Neuroevolutionary Preference Learning (NPL) to obtain an
accuracy of 96%.

Computational approaches to confidence level are more rare.
Most frequently, researchers focused on similar topics such
as leadership detection in multi-user scenarios, e.g., social
games [4], and self-efficacy in s pain-related scenario [37].
We are unaware, at this stage, of any existing model for the
recognition of confidence level from full body cues in the
context of a single-user task in education.

V. THE VI-WEDRAW DATASET

Body movement plays multiple roles in the weDRAW
project: first, it is a means both for the child and the teacher
to explore, construct, and understand some arithmetical and
geometrical concepts [38]; second: it allows an observer (either
the teacher or the technology) to gain insights on a child’s
cognitive and affective processes that affect learning [26]. In
particular, in this paper, we only focus on the second aspect,
i.e., a communication channel allowing humans to express and
perceive implicit high-level messages, such as emotional and
cognitive states or social boundaries. Thus, it is out of the
scope of this paper to recognize whether the child was able to
perform correctly the task through the appropriate choice of
gestures and poses.

A. Dataset and Participant Profile

For the purpose of the work we created, with the partici-
pation of visually impaired children, the VI-weDraw dataset,
which comprises body movement data, captured during math-
ematical problem-solving specifically designed for the experi-
mental setting. The tasks were based on project premises and
included: angles, symmetry and reflection, considered as a type
of isometric transformation of shapes. The dataset consists of
two synchronized video recordings (frontal and lateral) with
corresponding audio data. All the children recruited for the
experiment were studying in Genoa and participating in a
rehabilitation programme at Chiossone Institute in Genoa at
the time of the data collection. We collected the data from
3 blind and 14 low-vision children. The visual acuity of the
collective group ranged from no perception of the light to
visual acuity of 1/20 from an eye. To understand the level of
cognitive impairment, the verbal QI (QIV) and performance
QI (QIP) items of the Weschler Intelligence Scale for Children

(WISC-1V) [47] were used as well as the TAG and the
Griffiths-III [22] tests. Collectively, the cognitive tests showed
that 3 of the 17 children had levels of cognitive impairments.

B. The mathematical problem-solving tasks

Following the procedure described in [39] with typical
developing children, the data collection session started with
an exploration of static representation of angles using child’s
arms, whose movements were supported with sonification
technology. Sounds were realized using a tonal scale played
by strings instruments, and the pitch was mapped to the inner
angle (along the vertical plane) between child§ arms. It was
played in real-time, according to child’s arms aperture (see
Fig. 1).

Differently from [39], the children were also trained to
use proprioceptive and tactile feedback with a flat wall as
reference: standing with the back flat against the wall rep-
resents 90 degrees angle. The child’s arms extended outwards
ipsilaterally (and against the wall) to form a 180 degrees
angle. By extending one arm outward ipsilaterally and the
other contralaterally, the children formed a 0 degrees angle,
while extending one arm outward ipsilaterally and the other
in the anterior they created a 90 degrees angle. For each child
the task was first explained by the instructor, who helped the
child’s exploration of angles O degrees, 90 degrees and 180
degrees as described above. Next, the child was encouraged
to explore sounds feedback of her/his own. Finally, the child
was asked to represent 45 degrees and 135 degrees angles. In
the second task, each child was asked to represent 45 degrees
angle (and 135 degrees angle) by rotating his/her body about
the vertical axis. This additional proprioceptive and tactile
exploration was suggested by the expert in visual disability
rehabilitation working in the project.

VI. ANNOTATION AND LABELING

From the video data, we extracted the episodes in which
each child attempt to solve the given mathematical problems.
We collected in this way 92 episodes with total duration of 12
minutes and 10 seconds. All the episodes were presented to
the annotators in random order and without audio information.
Although in the literature there are findings suggesting that for
learning related tasks, untrained observers can also provide
reliable ratings, we decided firstly to ask to four experts (co-
authors of this paper) to annotate each episode. The group
was composed of one rehabilitation specialist from Chiossone
Institute for visually impaired people, and three experts in
movement analysis from University of Genoa. They used a 1-
to-5 Likert scale, with 3 as neutral state, for each of the degrees
of confidence and engagement Each vote was a result of the
informal consensus between all the experts. Meanwhile, they
also discussed and jointly reported the nonverbal behaviors
observed. The same experts proposed a list of 31 observed
nonverbal behaviors (see Tab. I). For the second round of
annotations, we chose 20 episodes, from the initial set of
92, which in the above mentioned ranking were annotated as
representing high/low engagement and high/low confidence.



TABLE I: The list of nonverbal behaviors and their frequencies of appearance in the dataset

Movement quality Posture

Gesture

Id  Cues % Id | Cues % Id | Cues %
1 Focused, direct movement 3444 10 | Gaze down 38.99 21 | Exp. of positive emotions (e.g. laughter)  18.33
2 Jerky movement 25.00 11 | Tendency to act 25.00 22 | Nervous smile or laughter 13.99
3 Hesitating movement 22.78 12 | Listening predisposition 25.00 12 | Open mouth 10.00
4 Fluid movement 21.11 13 | Body as a reference point 20.00 21 | Nodding during tasks resolution 7.88
5 Impulsive movement 20.00 14 | Gaze contact with the interlocutor 18.33 25 | Grabbing clothes 7.88
6 Inhibited movement 17.22 15 | Withdraw from action 16.77 26 | Rocking 7.88
7 Not goal-oriented movement  16.77 16 | Outward-facing gaze 13.99 27 | Lips biting 6.77
8 Slow movement 15.00 17 | A loss of posture alignment 13.33 28 | Deictic gestures 5.00
9 Misalignment 18 | A loss of balance 29 | Hands kept together 5.00
of different body planes 11.11 (feet support instability) 13.32 30 | Hands hold behind back 4.44
19 | Posture openness 8.89 31 | Touching face or mouth 0

20 | Legs are moved while body is still 7.78

TABLE 1II: Cues associated with high-level of engagement
annotation, expressed in frequency above median value.

id Nonverbal Cues % Annotation Frequency
1 Focused, direct movement 25.56
11 Tendency to act 18.99
12 Listening predisposition 17.22
4 Fluid movement 16.11
21 Expressing positive emotions

(e.g. laughter) 15.00

TABLE III: Cues associated with high-level of confidence
annotation, expressed in frequency above median value.

id Nonverbal Cues % Annotation Frequency
1 Focused, direct movement 31.66
11 Tendency to act 21.77
10 Gaze down 21.11
12 Listening predisposition 15.66
5  Impulsive movement 15.00

TABLE 1V: Cues associated with low-level of engagement
annotation, expressed in frequency below median value.

id Nonverbal Cues % Annotation Frequency
10 Gaze down 19.44
2 Jerky movement 13.89
15 Withdraw from the action 12.78
3 Hesitating movement 10.56
7  Not goal-oriented movement 10.56

TABLE V: Cues associated with low-level of confidence
annotation, expressed in frequency below median value.

id Nonverbal Cues % Annotation Frequency
10 Gaze down 19.44
3 Hesitating movement 14.44
2 Jerky movement 13.33
6  Inhibited movement 10.00
7  Not goal-oriented movement 10.00

Three experts (one psychomotrician and two specialists in
orientation and mobility for visually impaired patients) and
six non-experts annotated all 20 episodes displayed in random
order. We decided to perform a second annotation by both
experts and non experts to check whether particular patterns
are differently recognized by these two groups of annotators,
meanwhile we expected the same types of observations by the
three experts compared to those of the first round annotation.
Annotators were asked to indicate relevant nonverbal behaviors
from the list presented in Tab. I, and the perceived level of
child engagement and confidence (defined as above), using a
1-to-5 Likert scale.

To measure inter-rater agreement on perceived engagement
and confidence, we computed two-ways random ICC average
agreement [24] of the Likert values. Results are 0.5291 for
engagement and 0.4662 for confidence. These ICCs are fair
[11], especially considering the mixture of expertise of the
annotators.

For annotation of nonverbal behaviors, we firstly computed
the frequency with which each cue was selected as relevant.
The nonverbal behaviors: 1) related to gaze direction, 2) move-
ments qualities, such as directness, hesitation, or jerkiness, 3)
involvement or retraction from the action, and preparation to
listen were frequently chosen as relevant (see Tab. I).

To understand the relation between behaviors and the tar-
geted cognitive states, we computed annotation frequency of
each behavior in only videos ranked as “high engagement”
and “high confidence”. We used the median value for each
cognitive state (for engagement equal to 4 and for confidence
to 3) as a threshold for separating the episodes rated as “high”
from the“low” ones. Next, for each behavior, we computed
annotation frequency separately for videos above and below
these thresholds. The most frequent behavior for each state
is reported in Tab. II (high engagement), and Tab. III (high
confidence). As it can be seen, two of them are presented in
both states: focused movement and tendency to act. Thus, they
can be indicators of both high engagement and confidence.

We used the same approach to find nonverbal cues of low
engagement and confidence. Results in Tab. IV and V show
that low engagement and confidence are mostly expressed with
gaze down, jerky and hesitating movement, and non goal-
oriented movement. Interestingly, cues appear frequently for



low levels of both cognitive states (e.g., gaze down, or jerky
movement).

As reported in Tab. III- V, some cues were frequently
annotated: 1) for both cognitive states, and 2) in high and
low level of the same cognitive state. This might give to the
reader the impression that these cues are not discriminative.
There are, however, possible explanations for this observation.
Regarding case 1), it is possible that such cues, e.g. focused
movement, are relevant for a cognitive state only if they co-
occur with some other behaviors. The sharing of specific
cues between low confidence and engagement may also be
explained by the fact that the two states often co-occur. Indeed
frequently, low level of self-confidence tends to influence
engagement and participation in task, especially considering
the learning tasks and children’s young ages [14]. Regarding
case 2, it is important to notice that some of the cues are
binary (e.g., appearance of laughter as expression of positive
emotion) whilst others can be considered as continuous cues
(e.g., fluid movement)). In the case of continuous cues, it might
happen that different “degrees” of such a cue can be associated
with different levels of the corresponding cognitive state. This
example shows a shortcoming of our annotation schema, as so
far we have not used a continuous scale for the annotation of
nonverbal behaviors. Thus, future works are needed to address
this shortcoming.

Considering these preliminary results and the final aim of
the work, it is interesting to highlight that cues as gaze,
generally considered as one of the fundamental cues in video
detection of children and students engagement [42], [44], had
a relevant role for human annotators also in the context of
visually impaired people, especially in the case of low en-
gagement and confidence. Literature on early-social cognitive
development, deeply analyzed the use of gaze, starting from
infancy, as a privileged cue of social interaction and others’
attention and intention. When mutual gaze occurs, according
to theorists [32], it is a sign of social engagement and mutual
interaction, whilst following gaze is considered a sign of
understanding others’ attention. Gaze alternation, in dyadic or
group interaction, is used to assess joint attention [1]. Those
cues were largely considered, for example, in understanding
engagement in autistic children [10]. From the literature, we
know that blind children have difficulties in detecting patterns
of social interactions, meanwhile sighted people surrounding
them may have difficulties assessing where a blind child
focuses her attention, since there is neither visual orienting and
pointing, and gazing and facial expressions are more neutral
[5]. For this reason, we may suppose that the absence of
such common patterns of joint attention and engagement, led
annotators (who were in majority non-experts), to consider
still position of gaze, looking down, as a cue of both lack of
engagement and self-confidence, as this is how it is perceived
by typically developed people in social interaction contexts. To
check this hypothesis (and be able to perform a comparative
analysis between non-experts and experts), we need, however,
to collect more annotation from experts.

VII. AUTOMATED CLASSIFICATION
A. Features extraction

To check whether it is possible to detect the levels of
engagement and confidence from visual data in the context
of a single-user task, we performed a series of preliminary
experiments with standard machine learning techniques on the
dataset presented in Section V. Due to the small number of
annotated episodes, we subdivided them into smaller segments
of fixed duration of 50 frames (corresponding to 1 second),
obtaining 758 segments. The labels for each of the two states
were not balanced. The same shortcoming was observed after
the sub-segmentation. Thus, we decided to regroup the rates:

o Levels 4 and 5 on the engagement scale were regrouped
into high level engagement,

e Levels 1 and 2 on the confidence scale were regrouped
into low engagement level.

o Level 3 expressed medium level of engagement.

We obtained in this way, 294 segments for high engage-
ment, 176 for medium and 288 for low engagement and
172 segments for high confidence, 317 for medium and 269
segments for low confidence. 15 features were extracted from
2D positional data obtained by applying OpenPose [7] to the
frontal view recordings. The features were computed on: 1)
front head, 2) left and right elbow, 3) left and right knee, 4)
Cervical vertebrae (C7). Eight features are low-level kinematic
features: Right and Left Arm Position Variances, Velocities,
Kinetic Energies, Head Velocity and Kinetic Energy. Head Side
Leaning is computed as a difference between the x coordinate
of the head and the mean of the x coordinates of the upper
limbs. The algorithm by [34] is used to compute Right Arm
and Left Arm Stability, [2] to compute Arms Fluidity Index
and [8] to compute Closure Area. Body Symmetry Index is
the sum of: 1) the sum of absolute differences between x
(resp. y) coordinates of the upper body limbs and C7, 2)
the absolute difference of the head and C7 x coordinates.
Finally, Foot Symmetry is computed as the distance between
the x coordinates of the child lower body limbs and C7 x
coordinate. It is important to state that, as a first step, these
features cover only a subset of the cues listed in Tab. III-V.
The kinematic features are low-level components of various
expressive qualities (first column of Tab. I), such as fluidity or
impulsivity [6]. The remaining features correspond to some of
the observed postures and gestures (second and third column
of Tab. I), e.g., loss of balance (19), posture openness (20).

Next, three aggregation operators (average, maximum, and
minimum) were applied to the values computed on the sin-
gle observations. Thus, a 45-feature vector was used for
each segment. Finally, the data was normalized using the z-
normalization method.

B. Classification

We performed a set of machine learning experiments to
automatically classify three levels of confidence and engage-
ment (low, medium, high) from video data. We explored a
set of traditional machine learning algorithms: Support Vector



Machine with polynomial (SVM-poll) and radial basis kernel
(SVM-rbf), Random Forest (RF), BayesNet (BN), and Multi-
Layer Perceptron (MLP). The experiments were performed us-
ing feature reduction and dimensionality reduction techniques:

e PCA - 16 principal components extracted from the data
(obtained with a threshold of 95% of variance covered),

e Greedy - 12 features obtained from Greedy Stepwise
Search combined with Correlation-based Feature Selec-
tion.

We have used a 10-fold validation procedure. The results for
the three-class classification task are shown in Table VI. All
experiments were performed in Weka 3.8 software?.

TABLE VI: Results (in terms of F-score) for 3-class classifi-
cation task

Engagement Confidence
PCA | Greedy | PCA | Greedy
SVM-1bf | 0.63 0.63 0.6 0.62
SVM-poll | 0.61 0.56 0.56 0.57
RF 0.65 0.73 0.61 0.7
MLP 0.57 0.54 0.49 0.5
BayesNet | 0.52 0.6 0.47 0.56

C. Discussion

As can be seen in Table VI, the best results were obtained
with Random Forest and Greedy feature reduction. In general,
the results are not perfect, but it should be noted that the
experiments were performed on noisy 2D data extracted using
OpenPose. Some of the tasks given to the children required
the rotation of the whole body, leading to a lack of 2D
data during the child’s rotation. We believe that the results
could improve using 3D positional data (e.g., from Kinect® or
Notch*). Another important shortcoming is that we have not
used all relevant cues from Tab. III- V. By implementing the
remaining cues we hope in future to improve the classification
results.

VIII. CONCLUSIONS AND FUTURE STEPS

In accordance to the the main theme of this year conference
which is Affective Computing for ALL (AC4ALL), in this
paper, we focused on a specific group of impaired users of
AC technology. We hope that this work may help include such
specific-needs users in benefiting from AC technologies. In
particular, we analyzed full-body indicators of engagement and
confidence in visually impaired primary school children. A
two-steps annotation was performed by expert and non expert
annotators to identify a set of nonverbal cues of engagement
and confidence. We also proposed a preliminary classification
model of engagement and confidence levels from a set of cues
extracted from 2D positional data.

The main contributions of this paper are:

Zhttps://www.cs.waikato.ac.nz/ml/weka/downloading.html
3https://developer.microsoft.com/en-us/windows/kinect
“https://wearnotch.com

o To the authors’ knowledge, this is the first analysis of the
nonverbal full-body cues of cognitive states in visually
impaired children, and a first attempt to create a model of
nonverbal full-body communication for visually impaired
children in learning context

o This is one of the first attempts to automatically classify
confidence levels from bodily cues in the context of
single-user learning tasks

As future steps, we plan to perform a similar analysis
of nonverbal behaviors in the same context on a control
group of sighted children to further understand differences and
commonalities in nonverbal behaviors compared to visually
impaired ones. As part of future works, then, we will record
more children data, and extend, through other rounds of human
annotation, the nonverbal behaviors model. Since the initial
results of the automatic classification are promising, we will
extract more features to improve the results, as well as test
different machine learning techniques. Another possible exten-
sion involve multimodal data collection and classification. For
this purpose, we consider using low-intrusive wearable sensors
that can be used to collect the data of children activity without
violating their privacy, such as IMU and EMG sensors.
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